2. 青岛大学基础医学院生理学教研室,山东 青岛 266071
焦虑是机体对外源性和内源性刺激的适应性反应,但长期或反复的应激刺激可诱发一系列情感障碍性精神疾病,包括焦虑症、抑郁症及创伤后应激障碍综合征等[1-3]。内侧前额叶皮质(mPFC)是大脑中重要的情感调控脑区之一[4-5]。大量研究表明,mPFC与基底外侧杏仁核和腹侧海马区之间存在着千丝万缕的投射关系,这些相互联系在调控动物的焦虑行为方面发挥重要作用[6-8]。目前,焦虑和应激诱发焦虑障碍的具体机制仍然不清楚[9-11]。有研究发现,兴奋性/抑制性神经递质系统失衡可能引发各脑区之间功能连接异常以及突触水平的改变,而这些改变在焦虑障碍的发生和发展中起着关键作用[12-14]。本研究通过反复禁锢应激建立小鼠焦虑模型,并从离体小鼠脑片上记录mPFC脑区锥体神经元的兴奋性和抑制性突触后电流的变化,以探讨焦虑的可能突触机制。
1 材料与方法 1.1 实验动物12~20周龄、体质量24~32 g的C57BL6/J雄性小鼠,购自北京维通利华实验动物技术有限公司。小鼠每笼4只饲养,可自由饮水和摄食。鼠笼置于湿度为40%~60%、温度为(21±2) ℃、12 h昼夜循环光照的动物中心。实验开始前,小鼠需要适应实验环境至少1周。
1.2 试剂及仪器人工脑脊液(ACSF)、电极内液、脑片切片液、脑片恢复液、犬尿喹啉酸、AP-5、河鲀毒素(TTX)及印防己毒素(Picrotoxin)(Tocris和Sigma公司),体积分数0.95 O2及体积分数0.05 CO2混合气体(青岛德海伟业科技有限公司),异氟烷(北京科月华诚科技有限公司)。玻璃微电极和震动切片机(美国WPI),禁锢器(河南智科弘润环保科技有限公司),膜片钳放大器(美国Axon700B),数模转换器(Molecular Devices,USA),膜片钳电动微操纵仪(美国Sutter),正置荧光显微镜及其成像系统(Olymplus),精密蠕动泵(苏州阿尔法生物实验器材有限公司)。
1.3 实验方法 1.3.1 反复禁锢应激模型构建每天禁锢小鼠1 h,连续4 d。在禁锢前,先用异氟烷将小鼠轻微麻醉,然后将其放入禁锢器中,以确保其四肢和躯干不能自由活动。在放置过程中,将小鼠保持头下尾上的姿势。随后,将禁锢器置于与地面成45°角的支架上。在禁锢期间,观察小鼠的生命体征并维持其平稳状态。行为测试和电生理记录在禁锢后7~12 d进行。
1.3.2 高架十字迷宫(EPM)实验EPM是整体距地高度40 cm的四臂呈“十”字相交的迷宫,包含2个平坦且四周无遮挡的开放臂、2个有三面包围的闭合臂和1个四臂相交的中心区[15]。在测试过程中,先将实验鼠置于弱光且安静的环境中,并从中心区将其释放进入EPM,随后的10 min让小鼠在迷宫中自由探索。同时,利用Noduls EthoVision XT 8.5自动分析系统精准采集实验鼠在各区域内的停留时间。
1.3.3 小鼠离体脑片的制备实验鼠麻醉后迅速用切片液经心脏灌注,快速取脑后置入体积分数0.95 O2及体积分数0.05 CO2饱和的冰冷切片液中。用震动切片机制备厚度为300 μm含有mPFC的冠状脑切片。将脑片转入盛有恢复液的孵育缸中,在33 ℃恒温孵育30 min,然后室温孵育至少1 h。
1.3.4 mPFC脑片全细胞膜片钳记录将孵育好的脑片转入膜片钳记录槽中,利用蠕动泵以2 mL/min的流量灌流氧饱和的ACSF溶液。通过光镜定位mPFC脑区,并根据放电活动和细胞形态挑选活性较好的锥体神经元进行记录。为了分离兴奋性和抑制性突触后电流,将不同类型的阻断剂加入到ACSF中。在ACSF中添加3 mmol/L Kynurenic acid以记录抑制性突触后电流(sIPSCs),随后,再追加1.0 μmol/L TTX来记录微小抑制性突触后电流(mIPSCs)。而在记录兴奋性突触后电流(sEPSCs)时则加入50 μmol/L Picrotoxin和50.0 μmol/L AP-5,在此基础上再追加1.0 μmol/L TTX记录微小兴奋性突触后电流(mEPSCs)。记录电极电阻为4~6 MΩ,接入电阻为10~30 MΩ。记录时,如果串联电阻或电池电容偏离初始值>20%,则立即停止记录。数据收集使用pClamp10.2软件,待电流状态稳定以后开始记录,加药采样3~5 min,使用pClampfit10.2(Molecular Devices)取后半段60 s平稳阶段的数据进行分析。
1.4 统计学分析使用IBM SPSS Statistics软件进行数据的统计分析,应用Mini Analysis软件对突触电流的幅度及频率进行详细分析。计量数据以x±s表示,两组间比较采用成组t检验。P < 0.05为差异有统计学意义。
2 结果 2.1 反复禁锢对小鼠焦虑样行为的影响评价实验鼠焦虑程度的EPM测试结果显示,对照组和禁锢组小鼠在开放臂的活动时间分别为(38.93±20.81)、(13.77±13.10)s(n=6),与对照组相比较,禁锢组小鼠在EPM开放臂的活动时间明显缩短,差异有统计学意义(t=3.069,P < 0.01)。
2.2 反复禁锢应激对小鼠mPFC脑区锥体神经元sEPSCs的影响膜片钳结果表示,与对照组相比较,禁锢组小鼠mPFC脑区锥体神经元mEPSCs频率增加,差异有统计学意义(t=4.009,P < 0.01),但幅度保持不变(P>0.05);而禁锢组小鼠mPFC脑区锥体神经元sEPSCs的幅度、频率均无变化(P>0.05)。见表 1。
表 1 反复禁锢对小鼠mPFC脑区锥体神经元sEPSCs的影响(x±s) |
![]() |
与对照组相比较,禁锢组小鼠mPFC脑区锥体神经元mIPSCs幅度增加,差异有统计学意义(t=2.172,P < 0.05),但频率保持不变(P>0.05);而禁锢组小鼠mPFC脑区锥体神经元sIPSCs频率和幅度均不变(P>0.05)。见表 2。
表 2 反复禁锢对小鼠mPFC脑区锥体神经元sIPSCs的影响(x±s) |
![]() |
焦虑障碍在我国的发病率极高[16-18],是一种常见的以过度担忧和不安为特征的精神疾患。焦虑障碍的病因尚不完全清楚[19-20]。一般认为,焦虑障碍是由生物遗传、心理和社会环境等多方面因素共同作用所致。有研究表明,应激性刺激可诱发焦虑障碍、抑郁症、精神分裂症等多种情感障碍性精神疾病[21-22]。反复禁锢作为一种经典的单一性应激源,可以显著诱发小鼠的焦虑表型[23-25]。本研究通过连续4 d反复禁锢应激刺激构建的焦虑小鼠模型已在实验室被反复验证,并获得成功[26]。关于EPM行为学数据分析,目前大多数实验分析软件以小鼠四只爪全都进入某个臂作为完全进臂标准,也有以动物躯干中心或前爪入臂为进臂标准[27-28],这些差异与分析软件的计算方式有关。本研究采用的软件是以整只小鼠进入EPM的某个臂为标准,这比其他分析标准更严格。通过EPM行为学实验检测小鼠在反复禁锢4 d后的焦虑水平,结果显示,小鼠在反复禁锢后焦虑样行为明显增加。
以往的研究表明,大脑内谷氨酸受体介导的兴奋性突触传递和γ-氨基丁酸受体介导的抑制性突触传递共同调节焦虑相关行为[29-30]。研究表明,慢性应激通过调节谷氨酸的释放和重摄取、降低突触α-氨基-3-羧基-5-甲基异恶唑-4-丙酸受体的可利用性、降低突触的密度和直径等来影响大脑皮质的功能[31],从而导致mPFC和海马突触的减少与突触重塑,并破坏焦虑行为神经环路的稳定性[29]。然而,本研究发现,反复禁锢后,小鼠mPFC脑区中的锥体神经元的抑制性和兴奋性突触传递都得到了增强,表现为mEPSCs频率和mIPSCs幅度的增加。一般认为,频率的改变可能与突触前释放概率和(或)突触数目的变化有关[32],而幅度的改变可能与突触后膜上的受体数量密切相关。在正常情况下,谷氨酸兴奋性神经递质与γ氨基丁酸抑制性神经递质共同维持中枢神经系统的稳态[33-35],但在反复禁锢后兴奋性/抑制性突触传递失衡可能与小鼠明显的焦虑样行为有关,但具体机制有待进一步研究。
综上所述,本研究结果显示,反复禁锢应激增强了小鼠mPFC脑区锥体神经元的兴奋性和抑制性突触传递,这种突触传递的可塑性变化可能是导致小鼠产生焦虑样行为的关键细胞机制。这一发现有助于阐明焦虑障碍的发生与应激之间的脑机制关系,并为相关精神疾病的精准治疗提供可能的理论指导。
[1] |
RADLEY J J, HERMAN J P. Preclinical models of chronic stress: adaptation or pathology?[J]. Biological Psychiatry, 2023, 94(3): 194-202. DOI:10.1016/j.biopsych.2022.11.004 |
[2] |
CHEN Y X, YAO S Y, SHU X L, et al. Changes in mRNA and miRNA expression in the prelimbic cortex related to depression-like syndrome induced by chronic social defeat stress in mice[J]. Behavioural Brain Research, 2023, 438: 114211. DOI:10.1016/j.bbr.2022.114211 |
[3] |
朱明好, 蒋宁, 周文霞. 不确定性空瓶饮水刺激法和束缚应激法建立小鼠焦虑模型及比较[J]. 中国药理学与毒理学杂志, 2019, 33(2): 102-108. |
[4] |
XU P, CHEN A, LI Y P, et al. Medial prefrontal cortex in neurological diseases[J]. Physiological Genomics, 2019, 51(9): 432-442. DOI:10.1152/physiolgenomics.00006.2019 |
[5] |
CAI Y Q, GE J L, PAN Z Z. The projection from dorsal medial prefrontal cortex to basolateral amygdala promotes behaviors of negative emotion in rats[J]. Frontiers in Neuroscience, 2024, 18: 1331864. DOI:10.3389/fnins.2024.1331864 |
[6] |
ZHANG W H, LIU W Z, HE Y, et al. Chronic stress causes projection-specific adaptation of amygdala neurons via small-conductance calcium-activated potassium channel downregulation[J]. Biological Psychiatry, 2019, 85(10): 812-828. DOI:10.1016/j.biopsych.2018.12.010 |
[7] |
LIU D L, ZHENG X F, HUI Y Q, et al. Lateral hypothalamus orexinergic projection to the medial prefrontal cortex modulates chronic stress-induced anhedonia but not anxiety and despair[J]. Translational Psychiatry, 2024, 14(1): 149. DOI:10.1038/s41398-024-02860-9 |
[8] |
REN X, ZHAO X L, LI J W, et al. The hippocampal-ventral medial prefrontal cortex neurocircuitry involvement in the association of daily life stress with acute perceived stress and cortisol responses[J]. Psychosomatic Medicine, 2022, 84(3): 276-287. DOI:10.1097/PSY.0000000000001058 |
[9] |
TOVOTE P, FADOK J P, LVTHI A. Neuronal circuits for fear and anxiety[J]. Nature Reviews Neuroscience, 2015, 16(6): 317-331. DOI:10.1038/nrn3945 |
[10] |
CALHOON G G, TYE K M. Resolving the neural circuits of anxiety[J]. Nature Neuroscience, 2015, 18(10): 1394-1404. DOI:10.1038/nn.4101 |
[11] |
ZHAO H Q, ZHOU M, LIU Y, et al. Recent advances in anxiety disorders: Focus on animal models and pathological mechanisms[J]. Animal Models and Experimental Medicine, 2023, 6(6): 559-572. DOI:10.1002/ame2.12360 |
[12] |
LIU W Z, ZHANG W H, ZHENG Z H, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety[J]. Nature Communications, 2020, 11(1): 2221. DOI:10.1038/s41467-020-15920-7 |
[13] |
ZHENG Z H, TU J L, LI X H, et al. Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala[J]. Brain, Behavior, and Immunity, 2021, 91: 505-518. DOI:10.1016/j.bbi.2020.11.007 |
[14] |
TONG X H, WU J J, SUN R Z, et al. Elevated dorsal medial prefrontal cortex to lateral habenula pathway activity mediates chronic stress-induced depressive and anxiety-like behaviors[J]. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 2024(9): 49. |
[15] |
PELLOW S, CHOPIN P, FILE S E, et al. Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat[J]. Journal of Neuroscience Methods, 1985, 14(3): 149-167. DOI:10.1016/0165-0270(85)90031-7 |
[16] |
PAN K Y, VAN TUIJL L, BASTEN M, et al. The mediating role of health behaviors in the association between depression, anxiety and cancer incidence: an individual participant data meta-analysis[J]. Psychological Medicine, 2024, 1-14. |
[17] |
CHENG Y, FANG Y, ZHENG J X, et al. The burden of depression, anxiety and schizophrenia among the older population in ageing and aged countries: an analysis of the Global Burden of Disease Study 2019[J]. General Psychiatry, 2024, 37(1): e101078. DOI:10.1136/gpsych-2023-101078 |
[18] |
CAO H R, WU Y, YIN H, et al. Global trends in the incidence of anxiety disorders from 1990 to 2019: joinpoint and age-period-cohort analysis study[J]. JMIR Public Health and Surveillance, 2024, 10: e49609. DOI:10.2196/49609 |
[19] |
VICARIO C M, ALI SALEHINEJAD M, FELMINGHAM K, et al. A systematic review on the therapeutic effectiveness of non-invasive brain stimulation for the treatment of anxiety disorders[J]. Neuroscience & Biobehavioral Reviews, 2019, 96: 219-231. |
[20] |
LIN J B. Editorial: The etiology and pathogenesis of affective disorders[J]. Frontiers in Psychology, 2023, 14: 1233256. DOI:10.3389/fpsyg.2023.1233256 |
[21] |
BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: double trouble[J]. Neuron, 2020, 107(2): 234-256. DOI:10.1016/j.neuron.2020.06.002 |
[22] |
TROUBAT R, BARONE P, LEMAN S, et al. Neuroinflammation and depression: a review[J]. The European Journal of Neuroscience, 2021, 53(1): 151-171. DOI:10.1111/ejn.14720 |
[23] |
SHOJI H, MIYAKAWA T. Differential effects of stress exposure via two types of restraint apparatuses on behavior and plasma corticosterone level in inbred male BALB/cAJcl mice[J]. Neuropsychopharmacology Reports, 2020, 40(1): 73-84. DOI:10.1002/npr2.12093 |
[24] |
ZHU Y Q, KLOMPARENS E A, GUO S C, et al. Neuroinflammation caused by mental stress: the effect of chronic restraint stress and acute repeated social defeat stress in mice[J]. Neurological Research, 2019, 41(8): 762-769. DOI:10.1080/01616412.2019.1615670 |
[25] |
LIU W Z, WANG C Y, WANG Y, et al. Circuit- and laminar-specific regulation of medial prefrontal neurons by chronic stress[J]. Cell & Bioscience, 2023, 13(1): 90. |
[26] |
孙晓敏, 张萌, 迟宜嘉, 等. 禁锢应激对小鼠焦虑相关脑区c-Fos表达的影响[J]. 青岛大学学报(医学版), 2020, 56(2): 177-180. DOI:10.11712/jms.2096-5532.2020.56.067 |
[27] |
WALF A A, FRYE C A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents[J]. Nature Protocols, 2007, 2(2): 322-328. |
[28] |
DRINGENBERG H C, LEVINE Y, MENARD J L. Electrical stimulation of dorsal, but not ventral hippocampus reduces behavioral defense in the elevated plus maze and shock-probe burying test in rats[J]. Behavioural Brain Research, 2008, 186(1): 143-147. |
[29] |
HARTMANN J, DEDIC N, PÖHLMANN M L, et al. Forebrain glutamatergic, but not GABAergic, neurons mediate anxiogenic effects of the glucocorticoid receptor[J]. Molecular Psychiatry, 2017, 22(3): 466-475. |
[30] |
REN Z, PRIBIAG H, JEFFERSON S J, et al. Bidirectional homeostatic regulation of a depression-related brain state by gamma-aminobutyric acidergic deficits and ketamine treatment[J]. Biological Psychiatry, 2016, 80(6): 457-468. |
[31] |
JING X Y, WANG Y, ZOU H W, et al. mGlu2/3 receptor in the prelimbic cortex is implicated in stress resilience and vulnerability in mice[J]. European Journal of Pharmacology, 2021, 906: 174231. |
[32] |
QU Y G, YANG C, REN Q, et al. Regional differences in dendritic spine density confer resilience to chronic social defeat stress[J]. Acta Neuropsychiatrica, 2018, 30(2): 117-122. |
[33] |
INOTSUKA R, UDONO M, YAMATSU A, et al. Exosome-mediated activation of neuronal cells triggered by γ-aminobutyric acid (GABA)[J]. Nutrients, 2021, 13(8): 2544. |
[34] |
MOUSTEN I V, SØRENSEN N V, CHRISTENSEN R H B, et al. Cerebrospinal fluid biomarkers in patients with unipolar depression compared with healthy control individuals: a systematic review and meta-analysis[J]. JAMA Psychiatry, 2022, 79(6): 571-581. |
[35] |
WANG J, GAO Y, XIAO L Y, et al. Increased NMDARs in neurons and glutamine synthetase in astrocytes underlying autistic-like behaviors of Gabrb1-/- mice[J]. iScience, 2023, 26(8): 107476. |