文章快速检索 高级检索
  青岛大学学报(医学版)  2024, Vol. 60 Issue (6): 831-834   DOI: 10.11712/jms.2096-5532.2024.60.145
0

基金项目

山东省自然科学基金项目(ZR2019MH110);青岛市民生科技计划项目(19-6-1-19-nsh)

引用本文 [复制中英文]

张文秀, 赵慧, 韩晓华. A01对内皮素-1诱导的血管平滑肌细胞增殖的影响及机制[J]. 青岛大学学报(医学版), 2024, 60(6): 831-834.   DOI: 10.11712/jms.2096-5532.2024.60.145
[复制中文]
ZHANG Wenxiu, ZHAO Hui, HAN Xiaohua. Effect of A01 on endothelin-1-induced proliferation of vascular smooth muscle cells and its mechanism[J]. Journal of Qingdao University(Medical Sciences), 2024, 60(6): 831-834.   DOI: 10.11712/jms.2096-5532.2024.60.145
[复制英文]

作者简介

张文秀(1997-),女,硕士研究生.

通讯作者

韩晓华(1968-),女,博士,副教授,硕士生导师。E-mail:xiaohua.han@163.com.

文章历史

收稿日期:2023-02-07
修订日期:2023-07-26
网络出版日期:2024-10-29 10:19:29
A01对内皮素-1诱导的血管平滑肌细胞增殖的影响及机制
张文秀 , 赵慧 , 韩晓华     
青岛大学基础医学院生理学与病理生理学系,山东 青岛 266071
摘要目的 探讨TMEM16A/anoctamin 1(ANO1)抑制剂T16Ainh-A01(A01)对内皮素-1(ET-1)诱导的血管平滑肌细胞(VSMCs)增殖的影响及机制。方法 采用组织贴块法进行大鼠胸主动脉VSMCs的原代培养。将细胞分为4组:对照组(无药物处理)、ET-1组(用1 nmol/L ET-1处理)、ET-1+A01组(同时加入1 nmol/L ET-1和20 μmol/L A01)、A01组(用20 μmol/L A01处理)。通过检测增殖细胞核抗原(PCNA)表达观察细胞增殖,通过检测α-平滑肌肌动蛋白(α-SMA)和骨桥蛋白(OPN)表达观察细胞表型转换。结果 与对照组比较,ET-1组PCNA蛋白表达升高(F=25.190,P<0.01),α-SMA蛋白表达下降(F=19.912,P<0.01),OPN蛋白表达升高(F=9.795,P<0.05);与ET-1组比较,ET-1+A01组PCNA蛋白表达下降(F=11.472,P<0.01),α-SMA蛋白表达升高(F=12.818,P<0.01),OPN蛋白表达下降(F=11.013,P<0.01);与对照组比较,A01组上述蛋白表达均无明显变化。结论 A01对ET-1诱导的VSMCs增殖有明显的抑制作用,该作用可能和A01促进细胞表型从合成型转为收缩型有关。
关键词anoctamin-1蛋白    ANO1抑制剂    内皮缩血管肽1    血管    肌细胞,平滑肌    细胞增殖    表型    
Effect of A01 on endothelin-1-induced proliferation of vascular smooth muscle cells and its mechanism
ZHANG Wenxiu , ZHAO Hui , HAN Xiaohua     
Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
ABSTRACT: Objective To investigate the effect of TMEM16A/anoctamin 1 (ANO1) inhibitor T16Ainh-A01 (A01) on endothelin-1 (ET-1)-induced proliferation of vascular smooth muscle cells (VSMCs) and its mechanism. Methods The primary culture of VSMCs from the rat thoracic aorta was conducted using the tissue patch method. The cells were divided into four groups: control group (without drug treatment), ET-1 group (treated with 1 nmol/L of ET-1), ET-1+A01 group (treated with 1 nmol/L of ET-1 and 20 μmol/L of A01), and A01 group (treated with 20 μmol/L of A01). The expression level of proliferating cell nuclear antigen (PCNA) was measured to evaluate cell proliferation, and the levels of α-smooth muscle actin (α-SMA) and osteopontin (OPN) were measured to evaluate the phenotypic transformation of cells. Results Compared with the control group, the ET-1 group had significantly increased PCNA protein expression (F=25.190, P < 0.01), significantly reduced α-SMA protein expression (F=19.912, P < 0.01), significantly increased OPN protein expression (F=9.795, P < 0.05). Compared with the ET-1 group, the ET-1+A01 group had significantly reduced PCNA protein expression (F=11.472, P < 0.01), significantly increased α-SMA protein expression (F=12.818, P < 0.01), and significantly reduced OPN protein expression (F=11.013, P < 0.01). Compared with the control group, the A01 group had no significant changes in any of the above protein expressions. Conclusion A01 exerts a significant inhibitory effect on ET-1-induced proliferation of VSMCs, and this effect may be associated with its promotion of cell phenotypic transformation from synthetic to contractile.
KEY WORDS: anoctamin-1    ANO1 inhibitor    endothelin-1    blood vessels    myocytes, smooth muscle    cell proliferation    phenotype    

血管平滑肌细胞(VSMCs)异常增殖和迁移在高血压血管重构中发挥关键作用[1-2]。内皮素-1(ET-1)在VSMCs中表现出促有丝分裂、肥大反应的作用[3-4],还参与高血压、心力衰竭和动脉粥样硬化等多种心血管疾病的病理过程[5-8]。抑制ET-1诱导的VSMCs异常增殖和迁移,可以抑制上述病理进程[9]。anoctamin-1(ANO1或TMEM16A)是一种钙激活氯通道,涉及腺上皮分泌、平滑肌收缩、心肌生物电和感觉信号转导等多项功能[10-11],在VSMCs中广泛表达[12],在自发性高血压大鼠和肺动脉高压大鼠中参与血管重构的发生[13-14]。本研究通过检测增殖细胞核抗原(PCNA),进一步观察ANO1特异性抑制剂T16Ainh-A01(A01)对ET-1诱导的细胞增殖的影响,通过检测α-平滑肌肌动蛋白(α-SMA)和骨桥蛋白(OPN)探讨A01可能的作用机制。

1 材料与方法 1.1 试剂与仪器

ET-1购自上海AbMole公司,A01购自Sigma公司,PCNA抗体由Cell Signaling Technology公司提供,α-SMA和OPN抗体购自Abcam公司,β-actin抗体由北京博奥森公司提供,DMEM高糖培养液购自Gibco公司,胎牛血清购自美国BI公司,BCA蛋白测定试剂盒由上海Thermo公司提供,RIPA裂解液购自上海碧云天生物科技研究所,其他试剂均为国产分析纯。ET-1使用无菌水配成1 mmol/L的母液,A01用二甲基亚砜(DMSO)配成10~20 mmol/L的母液,使用前均用DMEM培养液稀释到终浓度。实验所用仪器包括CO2培养箱、超净工作台、Eppendorf高速离心机、37 ℃恒温孵育箱、多功能酶标仪以及Western显影仪等。

1.2 VSMCs的原代培养

选用体质量70~100 g(大约3周龄)的Wistar大鼠,以400 mg/kg水合氯醛腹腔注射麻醉。用体积分数为0.75的乙醇浸泡消毒后,置于无菌超净工作台内。迅速分离胸主动脉,将动脉放入加DMEM培养液的玻璃皿中,去除血管外结缔组织,沿中线剪开,用弯镊子轻柔刮下内皮,用眼科剪将其剪成大小约1 mm3小块,平铺于50 mL培养瓶底部,加入含有体积分数0.20胎牛血清的DMEM高糖培养液4~5 mL,直立放入培养箱内,5~6 h后翻瓶,培养1周左右,在显微镜下可看到贴壁组织块周围有VSMCs爬出,细胞融合达到60%~70%时进行传代,选择第5~8代生长良好的细胞进行后续实验。

1.3 实验分组

将VSMCs分为对照组(A组,无药物处理)、ET-1组(B组,用1 nmol/L ET-1处理)、ET-1+A01组(C组,同时加入1 nmol/L ET-1和20 μmol/L A01)、A01组(D组,用20 μmol/L A01处理),药物处理24 h后提取蛋白进行检测。

1.4 Western blot检测

药物处理结束后用RIPA裂解液提取蛋白,用BCA试剂盒测定蛋白浓度。所有样品上样量均为20 μg,经SDS-PAGE电泳后转移至PVDF膜上。用含100 g/L脱脂奶粉的TBST封闭1 h后,分别加入抗PCNA(1∶2 000)、α-SMA(1∶30 000)、OPN(1∶1 000)和β-actin(1∶8 000)抗体等一抗,4 ℃摇床孵育过夜。以TBST洗膜3次后,加入HRP标记的二抗,室温孵育1 h,ECL发光液显影,用Image J软件分析条带的灰度值。实验重复5次。

1.5 统计学分析

所得数据以x±s表示,应用SPSS 22.0软件采用2×2析因设计的方差分析进行统计学分析,P<0.05认为差异有统计学意义。

2 结果 2.1 A01对PCNA蛋白表达的影响

析因设计的方差分析显示,ET-1的主效应明显(F=16.755,P<0.01),A01的主效应无统计学意义(F=3.187,P>0.05),ET-1和A01之间有交互作用(F=9.028,P<0.01)。单独效应分析显示:与对照组比较,ET-1组PCNA蛋白表达明显上调(F=25.190,P<0.01);与ET-1组比较,ET-1+A01组PCNA蛋白表达明显下降(F=11.472,P<0.01);单独使用A01对PCNA蛋白表达没有明显影响(F=0.743,P>0.05)。提示单独应用ET-1可明显促进PCNA蛋白的表达,ET-1的作用可被A01所拮抗。见图 1表 1

A:对照组;B:ET-1组;C:ET-1+A01组;D:A01组。 图 1 各组PCNA、α-SMA、OPN蛋白表达的Western blot检测

表 1 各组PCNA、α-SMA、OPN蛋白表达的比较(n=5,x±s)
2.2 A01对α-SMA蛋白表达的影响

析因设计的方差分析显示,ET-1的主效应明显(F=10.306,P<0.01),A01主效应无统计学意义(F=3.853,P>0.05),两种药物之间有交互作用(F=9.612,P<0.01)。单独效应分析显示:与对照组比较,ET-1组α-SMA蛋白表达明显下降(F=19.912,P<0.01);与ET-1组比较,ET-1+A01组α-SMA蛋白表达明显上调(F=12.818,P<0.01);单独使用A01对α-SMA蛋白表达没有明显影响(F=0.647,P>0.05)。提示单独应用ET-1可使α-SMA蛋白水平升高,应用A01可阻断ET-1的作用。见图 1表 1

2.3 A01对OPN蛋白表达的影响

析因设计的方差分析显示,ET-1和A01的主效应均无统计学意义(F=1.940、2.755,P>0.05),两种药物之间有交互作用(F=9.201,P<0.01)。单独效应分析显示:与对照组比较,ET-1组OPN蛋白表达明显上调(F=9.795,P<0.01);与ET-1组比较,ET-1+A01组OPN蛋白表达明显下降(F=11.013,P<0.01);单独使用A01对OPN蛋白表达没有明显影响(F=0.943,P>0.05)。提示单独应用ET-1可使OPN蛋白水平升高,应用A01可阻断ET-1的作用。见图 1表 1

3 讨论

长期的高血压可导致血管结构和功能的改变,又称血管重构,血管重构和高血压的发展及重要靶器官损伤密切相关[15-16]。VSMCs作为血管壁的主体细胞,其异常的增殖迁移在高血压血管重构中发挥重要作用。体内多种因素,如血流动力学改变、血管活性物质(如血管紧张素Ⅱ、ET-1)、炎症因子和生长因子(如成纤维细胞生长因子、表皮细胞生长因子等),均与VSMCs功能异常密切相关[17-20]

ET-1是内皮细胞分泌的最重要的血管活性物质,具有很强的缩血管效应;ET-1也是一种有丝分裂原,在维持血管功能稳态中具有重要作用[3]。通常认为,ET-1诱导VSMCs异常增殖迁移与其结合ETA受体后导致胞内钙增加、AKT和ERK信号通路激活等有关[21-22]

最近研究发现,钙激活氯通道ANO1也是参与VSMCs功能调控的重要调控因子[13, 23-25]。ANO1激活可诱导VSMCs收缩,而抑制其功能性表达则通过舒张血管降低血压[23-24]。在自发性高血压大鼠中,VSMCs上ANO1功能性高表达促进高血压形成[13]。此外,ANO1还可以作为一种细胞增殖调节因子参与VSMCs增殖,促进血管重构和降低血管弹性[26-28]

我们的前期研究发现,ET-1能够明显上调VSMCs的ANO1表达[15]。本研究利用ANO1特异性抑制剂A01进一步探讨了ANO1高表达是否参与了ET-1诱导的VSMCs增殖。PCNA是DNA合成中重要的辅助因子,也是检测细胞增殖最常用的指标。本研究PCNA检测结果表明,A01可明显抑制ET-1诱导的VSMCs增殖。

正常的VSMCs呈现出高度分化、低增殖能力的收缩表型,其作用是调节血管壁张力及维持组织血流量,其标志性蛋白主要为α-SMA和平滑肌22α等;合成型VSMCs呈低分化,可分泌大量细胞外基质,参与血管壁形成、损伤修复等,其标志性蛋白主要为OPN。VSMCs可由收缩型转化为合成型,后者具有强大的增殖迁移能力从而促进血管重构的发生[29-30]。为进一步探讨A01的作用机制,本实验又检测了SMA和OPN蛋白的表达。结果显示,ET-1处理细胞24 h后,α-SMA表达降低而OPN表达升高,即ET-1能够诱导VSMCs由收缩型转化为合成型,促进细胞增殖,而应用A01可明显阻断上述变化。根据已有的研究文献,我们推测A01对细胞表型的调控可能与它抑制PI3K/AKT和ERK信号通路有关[26-27]

综上所述,ANO1特异性抑制剂A01对ET-1诱导的VSMCs增殖有明显的抑制作用,其作用可能与A01抑制ET-1诱导的细胞表型转换有关,这为ET-1引发的高血压、心力衰竭和动脉粥样硬化等多种心血管疾病的治疗提供了依据。

参考文献
[1]
RIZZONI D, AGABITI-ROSEI E. Structural abnormalities of small resistance arteries in essential hypertension[J]. Internal and Emergency Medicine, 2012, 7(3): 205-212. DOI:10.1007/s11739-011-0548-0
[2]
ZHANG F, GUO X Q, XIA Y P, et al. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis[J]. Cellular and Molecular Life Sciences, 2021, 79(1): 6.
[3]
JANKOWICH M, CHOUDHARY G. Endothelin-1 levels and cardiovascular events[J]. Trends in Cardiovascular Medicine, 2020, 30(1): 1-8. DOI:10.1016/j.tcm.2019.01.007
[4]
CARBONE F, MONTECUCCO F, SAHEBKAR A. Editorial commentary: promising findings on the role of endothelin-1 and related peptides in primary cardiovascular prevention[J]. Trends in Cardiovascular Medicine, 2020, 30(1): 9-10. DOI:10.1016/j.tcm.2019.02.006
[5]
LIU R Q, YUAN T Y, WANG R R, et al. Insights into endothelin receptors in pulmonary hypertension[J]. International Journal of Molecular Sciences, 2023, 24(12): 10206. DOI:10.3390/ijms241210206
[6]
CAI Z Y, GONG Z, LI Z Q, et al. Vascular extracellular matrix remodeling and hypertension[J]. Antioxidants & Redox Signaling, 2021, 34(10): 765-783.
[7]
EROGLU E, KOCYIGIT I, LINDHOLM B. The endothelin system as target for therapeutic interventions in cardiovascular and renal disease[J]. Clinica Chimica Acta; International Journal of Clinical Chemistry, 2020, 506: 92-106. DOI:10.1016/j.cca.2020.03.008
[8]
ZHAI M, GONG S Y, LUAN P P, et al. Extracellular traps from activated vascular smooth muscle cells drive the progression of atherosclerosis[J]. Nature Communications, 2022, 13(1): 7500. DOI:10.1038/s41467-022-35330-1
[9]
MOORHOUSE R C, WEBB D J, KLUTH D C, et al. Endothelin antagonism and its role in the treatment of hypertension[J]. Current Hypertension Reports, 2013, 15(5): 489-496. DOI:10.1007/s11906-013-0380-1
[10]
LIU Y N, LIU Z T, WANG K W. The Ca2+-activated chloride channel ANO1/TMEM16A: an emerging therapeutic target for epithelium-originated diseases?[J]. Acta Pharmaceutica Sinica B, 2021, 11(6): 1412-1433. DOI:10.1016/j.apsb.2020.12.003
[11]
DULIN N O. Calcium-activated chloride channel ANO1/TMEM16A: regulation of expression and signaling[J]. Frontiers in Physiology, 2020, 11: 590262. DOI:10.3389/fphys.2020.590262
[12]
ZENG J W, CHEN B Y, LV X F, et al. Transmembrane member 16A participates in hydrogen peroxide-induced apoptosis by facilitating mitochondria-dependent pathway in vascular smooth muscle cells[J]. British Journal of Pharmacology, 2018, 175(18): 3669-3684. DOI:10.1111/bph.14432
[13]
WANG B X, LI C L, HUAI R T, et al. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension[J]. Journal of Molecular and Cellular Cardiology, 2015, 82: 22-32. DOI:10.1016/j.yjmcc.2015.02.020
[14]
XIE J Y, LIU W Y, LV W J, et al. Transmembrane protein 16A/anoctamin 1 inhibitor T16Ainh-A01 reversed monocrotaline-induced rat pulmonary arterial hypertension[J]. Pulmonary Circulation, 2020, 10(4): 2045894020946670.
[15]
GAO Q N, XU L, CAI J. New drug targets for hypertension: a literature review[J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 2021, 1867(3): 166037. DOI:10.1016/j.bbadis.2020.166037
[16]
BROWN I A M, DIEDERICH L, GOOD M E, et al. Vascular smooth muscle remodeling in conductive and resistance arteries in hypertension[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38(9): 1969-1985. DOI:10.1161/ATVBAHA.118.311229
[17]
LAMB F S, CHOI H, MILLER M R, et al. TNFα and reactive oxygen signaling in vascular smooth muscle cells in hypertension and atherosclerosis[J]. American Journal of Hypertension, 2020, 33(10): 902-913. DOI:10.1093/ajh/hpaa089
[18]
HUMPHREY J D. Mechanisms of vascular remodeling in hypertension[J]. American Journal of Hypertension, 2021, 34(5): 432-441. DOI:10.1093/ajh/hpaa195
[19]
SHI J, YANG Y, CHENG A Y, et al. Metabolism of vascular smooth muscle cells in vascular diseases[J]. American Journal of Physiology Heart and Circulatory Physiology, 2020, 319(3): H613-H631. DOI:10.1152/ajpheart.00220.2020
[20]
BASATEMUR G L, JØRGENSEN H F, CLARKE M C H, et al. Vascular smooth muscle cells in atherosclerosis[J]. Nature Reviews Cardiology, 2019, 16(12): 727-744. DOI:10.1038/s41569-019-0227-9
[21]
TIAN X Y, ZHANG Q Y, HUANG Y Q, et al. Endothelin-1 downregulates sulfur dioxide/aspartate aminotransferase pathway via reactive oxygen species to promote the proliferation and migration of vascular smooth muscle cells[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 9367673.
[22]
HEINZE C, SENIUK A, SOKOLOV M V, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure[J]. The Journal of Clinical Investigation, 2014, 124(2): 675-686. DOI:10.1172/JCI70025
[23]
OH U, JUNG J. Cellular functions of TMEM16/anoctamin[J]. Pflugers Archiv: European Journal of Physiology, 2016, 468(3): 443-453. DOI:10.1007/s00424-016-1790-0
[24]
JACKSON W F. Calcium-dependent ion channels and the regulation of arteriolar myogenic tone[J]. Frontiers in Physiology, 2021, 12: 770450. DOI:10.3389/fphys.2021.770450
[25]
SUZUKI T, YASUMOTO M, SUZUKI Y, et al. TMEM16A Ca2+-activated Cl- channel regulates the proliferation and migration of brain capillary endothelial cells[J]. Molecular Pharmacology, 2020, 98(1): 61-71.
[26]
JI Q S, GUO S, WANG X Z, et al. Recent advances in TMEM16A: structure, function, and disease[J]. Journal of Cellular Physiology, 2019, 234(6): 7856-7873.
[27]
ZHANG X, ZHANG G H, ZHAO Z J, et al. Cepharanthine, a novel selective ANO1 inhibitor with potential for lung adenocarcinoma therapy[J]. Biochimica et Biophysica Acta Molecular Cell Research, 2021, 1868(12): 119132.
[28]
GUO S S, ZHANG L N, LI N. ANO1: more than just calcium-activated chloride channel in cancer[J]. Frontiers in Oncology, 2022, 12: 922838.
[29]
CLÉMENT M, CHAPPELL J, RAFFORT J, et al. Vascular smooth muscle cell plasticity and autophagy in dissecting aortic aneurysms[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39(6): 1149-1159.
[30]
CAO G M, XUAN X Z, HU J, et al. How vascular smooth muscle cell phenotype switching contributes to vascular disease[J]. Cell Communication and Signaling, 2022, 20(1): 180.