2. 青岛大学附属青岛市海慈医疗集团
2020年全球癌症统计结果显示,肺癌(LC)新发病人超过220万人,死亡超过179万人,已成为当今全球致死人数最多的癌症[1]。非小细胞肺癌(NSCLC)占LC的85%[2],驱动基因的突变被认为是导致NSCLC发生的主要致病机制之一,驱动基因在NSCLC细胞的生长、浸润和转移中起到重要推动作用[3]。其中表皮生长因子受体(EGFR)被认为是NSCLC中最常见的驱动基因,在临床NSCLC病人中该基因突变率为41.7%~44.8%[4-5]。EGFR酪氨酸激酶抑制剂(EGFR-TKIs)的出现为NSCLC病人的临床治疗带来了希望,EGFR-TKIs主要通过特异性地与EGFR激酶功能区中的ATP结合位点竞争性结合,抑制激酶活性从而抑制EGFR蛋白的磷酸化,阻断NSCLC细胞生长、增殖与转移的相关信号通路而发挥作用。体内外研究及临床治疗均证实,EGFR-TKIs对于EGFR敏感突变的NSCLC病人较传统化疗有着更好的疗效和安全性[6],已成为EGFR敏感突变型NSCLC病人的一线药物,但在广泛临床应用中,对其产生耐药性的报道越来越多。本文从原发性耐药、获得性耐药、适应性耐药3方面对近年来NSCLC的EGFR-TKIs耐药机制和潜在用药对策进行综述,以期为EGFR-TKIs耐药机制和抗耐药治疗的进一步研究提供参考。
1 EGFR-TKIs原发性耐药原发性耐药是指基因突变发生在对药物治疗不敏感的位置,病人首次应用EGFR-TKIs便无治疗效果。主要突变为EGFR基因20号外显子插入突变、鼠类肉瘤病毒癌基因(KRAS)突变及10号染色体上磷酸酶与张力蛋白同源物基因(PTEN)缺失。
1.1 EGFR基因20号外显子插入突变20号外显子插入突变占EGFR基因相关突变的4%~12%[7]。当突变发生时,肿瘤细胞可不受EGFR-TKIs的影响,继续激活EGFR相关通路[8]。在EGFR基因常见外显子突变亚型中,19号及21号外显子突变对EGFR-TKIs的治疗表现出敏感[9- 10],但20号外显子的插入突变对3代EGFR-TKIs的靶向治疗均不敏感[11]。但值得注意的是,20号外显子突变的少数亚型EGFR A763_Y764insFQEA可被厄洛替尼抑制[12],D770delinsGY亚型对达克替尼表现出敏感[12],因此辨别其突变亚型具有重要临床意义。20号外显子插入突变并非提示完全耐药,插入突变若发生在20号外显子前端则提示对EGFR-TKIs敏感,若发生在后端则提示耐药,此规律值得进一步探索和验证。
1.2 KRAS基因突变文献报道,NSCLC病人KRAS基因突变的发生率约为11%[13],KRAS基因发生突变时,会导致KRAS蛋白的结构发生改变并一直处于激活状态,进而持续激动EGFR非依赖性RAS/RAF/MEK/MAPK通路,使其不再受上游EGFR信号的影响[14]。ZHANG等[15]研究发现,对KRAS基因突变的NSCLC病人使用EGFR-TKIs治疗,其客观缓解率仅为9.5%,中位无进展生存期(mPFS)仅为1个月。因此,在选用EGFR-TKIs治疗前进行KRAS基因检测有重要意义。目前针对KRAS基因突变的首款靶向药物sotorasib(AMG510)已被FDA批准上市,国内对于KRAS抑制剂的研究也已进入到临床阶段。
1.3 10号染色体上PTEN缺失PTEN基因缺失在NSCLC病人中发生率较低,约为3.0%[16]。PTEN基因是首个被发现具有磷酸酶活性的抑癌基因,主要通过负调节PI3K/mTOR/Akt通路发挥抗癌作用。PTEN缺失可导致EGFR及Akt的激活,降低厄洛替尼诱导的细胞凋亡[17]。研究发现,在EGFR-TKIs治疗病人中,存在PTEN缺失的病人无进展生存期及总生存期更短[16]。目前,PTEN缺失已成为EGFR-TKIs原发性耐药的重要机制之一,提高PTEN的表达水平可提高EGFR-TKIs的敏感性,而调节microRNA-21、microRNA-25-3p、microRNA-103a-3p等靶向PTEN的microRNA可提高PTEN的表达水平[18]。
2 EGFR-TKIs获得性耐药获得性耐药是指在EGFR-TKIs治疗过程中,对NSCLC细胞中已存在基因改变的进一步选择以及在药物的选择压力下基因产生新的突变或异常表达而显现出的耐药性。
2.1 T790M突变在EGFR-TKIs治疗出现获得性耐药的病人中,约50%的病人出现了T790M突变[19],T790M突变是指EGFR基因20号外显子发生了二次突变,导致位于EGFR的第790位的苏氨酸(T)被取代为甲硫氨酸(M)[20]。其引发获得性耐药的可能机制为[21]:①突变使EGFR与ATP的亲和力大幅增加,从而抑制了EGFR-TKIs对ATP的竞争;②苏氨酸被体积较大的甲硫氨酸取代后,甲硫氨酸的一条侧链通过位阻效应阻碍EGFR与EGFR-TKIs的结合。第三代EGFR-TKIs奥希替尼可与胞内EGFR中的C797氨基酸共价结合,抑制EGFR的磷酸化及其下游信号的激活[22]。目前,奥希替尼对于初次治疗病人的mPFS可达20个月,对于已经过前代EGFR-TKIs治疗病人的mPFS可达10个月[23], 但在治疗后部分病人会出现C797S突变而再次耐药[24]。
2.2 C797S突变C797S突变即奥希替尼作用的EGFR第797位氨基酸结合位点由半胱氨酸(C)突变为丝氨酸(S),从而阻碍奥希替尼与Cys797氨基酸残基的共价结合,引发耐药。T790M突变与C797S突变同时存在反式突变和顺式突变:发生反式突变时肺癌细胞虽然对第三代EGFR-TKIs具有耐药性,但仍对第一、三代EGFR-TKIs联合疗法敏感;发生顺式突变时肺癌细胞对单独或者联合使用EGFR-TKIs均不敏感[25-26]。EAI045是近年来针对奥希替尼C797S突变耐药研发的新药,EAI045联合西妥昔单抗的疗法已在体内和体外试验中被证实对于奥希替尼耐药后的L858R/T790M/C797S突变有效[27],因此被誉为第四代EGFR-TKIs,但目前包括EAI045、JBJ-04-125-02及国产新药TQB3804在内的第四代EGFR-TKIs仍在临床研究阶段,尚未广泛投入到临床应用中。
2.3 肝细胞生长因子受体(MET)基因扩增MET基因扩增引发耐药性占EGFR-TKIs获得性耐药的15%~22%[28-30]。MET为原癌基因,其配体为肝细胞生长因子(HGF),MET基因扩增可通过激活ErbB3信号,活化ErBb3/PI3K/Akt信号通路,从而绕过EGFR-TKIs靶点EGFR,产生耐药性[30]。有研究发现,MET扩增降低了肿瘤细胞对第三代EGFR-TKIs的敏感性[31]。张宁宁[32]应用自主培养耐药性HCC827细胞系研究发现,克唑替尼(可针对MET的蛋白激酶抑制剂)单药或联用埃克替尼具有抑制MET信号通路活化的作用。临床试验证明,对MET阳性病人使用MET抑制剂onartuzumab联用厄洛替尼疗效显著[33]。值得注意的是,配体HGF的水平升高也可以通过诱导激活MET通路而引发EGFR-TKIs耐药[34],提示EGFR-TKIs耐药产生的原因并不局限于靶点本身。MET基因扩增合并T790M突变的耐药性病人约有6.8%,其进展后生存期(PPS)仅为10.7个月,对此类病人采用第一代EGFR-TKIs联用MET抑制剂或单用T790M抑制剂治疗均效果不佳[35],提示临床应用MET抑制剂联合T790M抑制剂可能为潜在抗耐药疗法。
2.4 人表皮生长因子受体-2(HER2)基因扩增HER2基因扩增在获得性耐药病人中的发生率约为12%[36]。HER2易与包括EGFR在内的其他HER家族成员结合形成异源二聚体,含有HER2的异源二聚体具有强致癌信号,可避开EGFR靶点,持续激活RAS/MAP/MEK和PI3K/Akt通路,使肿瘤细胞不断增殖与转移[37]。HER2基因扩增也被认为是奥希替尼获得性耐药的重要机制之一,奥希替尼联合曲妥珠单抗与微管抑制剂DM1的偶联物T-DM1是克服此种耐药的潜在疗法[38]。
2.5 上皮-间质转化(EMT)EMT在NSCLC获得性耐药中的发生率约20%[39],在EGFR-TKIs治疗过程中,EMT可由多种EMT转录因子启动,从而转化为迁移能力更强的间充质细胞[40]。研究发现,发生EMT的吉非替尼耐药细胞侵袭与转移能力更强[41]。目前许多研究已从抑制EMT转录因子及阻断相关通路的角度来研究抗EGFR-TKIs耐药。Twist1为EMT的转录因子之一,YOCHUM等[39]研究发现,Twist1过表达可通过抑制促凋亡蛋白Bim基因的转录使肿瘤细胞对厄洛替尼与奥希替尼产生耐药性,而骆驼蓬碱可通过抑制Twist1的表达来克服EGFR-TKIs耐药。
2.6 NSCLC转化为小细胞肺癌(SCLC)由NSCLC转变为SCLC产生获得性耐药的发生率为1.4%~14.0%[35, 42]。LEE等[43]采用基因测序及免疫组化的方法对EGFR-TKIs耐药性肺腺癌和SCLC进行了研究,发现两者的克隆起源相同,且RB1与TP53这两种抑癌基因的失活为转化发生的重要机制。耐药后发生组织学转化,提示耐药后有必要重新进行组织学检查,以及时改变治疗策略。目前,NSCLC转化为SCLC后采用经典型SCLC的放化疗治疗方案进行治疗是被广泛认可的[44]。
2.7 髓样细胞白血病-1(Mcl-1)基因过表达Mcl-1属于与调控细胞凋亡密切相关的B细胞淋巴瘤-2(Bcl-2)家族。SHI等[45]研究发现,奥希替尼能够通过促进Mcl-1的降解与延缓Bim的降解从而诱导EGFR敏感突变NSCLC细胞系凋亡,但对PC-9/AR、HCC827/AR等耐药细胞系无效。此外,过表达Mcl-1或直接抑制Bim均显著抑制了奥希替尼对于EGFR敏感突变NSCLC细胞系的凋亡作用,这表明Mcl-1的过表达是第三代EGFR-TKIs获得性耐药的重要耐药机制之一。目前,Mcl-1过表达已经在许多NSCLC EGFR-TKIs耐药细胞系中被证实[46],Mcl-1已成为逆转耐药性的治疗靶点之一。
目前靶向Mcl-1主要有两种途径[47]:①通过BH3模拟物等小分子抑制剂直接阻断Mcl-1与凋亡相关蛋白的相互作用;②通过靶向促进Mcl-1蛋白酶体的降解(如强心苷)或阻断Mcl-1的翻译(如mTOR抑制剂)和转录(CDK抑制剂)从而间接下调Mcl-1水平。此外,通过Bak/Bax激动剂避开Mcl-1的凋亡抑制直接激活线粒体外膜上的促凋亡蛋白Bak/Bax也是潜在有效的抗耐药方法[48]。
3 适应性耐药适应性耐药是指在EGFR-TKIs治疗起始时,NSCLC细胞便通过重构并激活其信号通路对药物靶向治疗产生适应性抵抗从而立即表达出耐药性。ROSELL等[49]研究认为,NSCLC细胞在用药之初可通过细胞外调节蛋白激酶(ERK)的负反馈丧失,影响受体酪氨酸激酶(RTK)的表达,而RTKs的激活导致了典型信号通路的重构,由此引发适应性耐药,并提出了EGFR-TKIs联用其他RTKs抑制剂为适应性耐药的潜在疗法。近期有研究发现,在EGFR-TKIs治疗的初期,部分NSCLC细胞可通过应激性激活NF-κB通路[50]、Stat3通路[51]来抵抗药物作用,从而引发适应性耐药。
在国内,MA等[52]研究发现,MEK/ERK/MAPK通路的反馈性重新激活是厄洛替尼重要的适应性耐药机制,通过应用厄洛替尼与MEK抑制剂曲美替尼的联合疗法可以显著抑制小鼠移植瘤的生长;周烨等[53]研究发现,EGFR-TKIs适应性耐药可由丝氨酸的生物合成途径引发,其中起主要作用的是磷酸丝氨酸氨基转移酶1、磷酸甘油酸脱氢酶和磷酸丝氨酸磷酸酶,通过抑制此3种酶的活性,EGFR-TKIs的疗效可以在早期得到提高,耐药的发生也得以延缓。
4 小结与展望EGFR-TKIs已成为治疗EGFR突变NSCLC病人的一线药物。但目前,EGFR-TKIs耐药性的频发对临床疗效已造成严重影响,且各类耐药机制复杂,部分耐药机制可同时存在,临床出现耐药后往往需要再次进行基因检测、病理诊断明确耐药类型,且目前针对各类耐药机制的对策尚未统一,耐药的后续治疗也往往以再次耐药告终。目前,对于EGFR-TKIs耐药机制的研究已步入多学科研究时代,但仍存有很多空白值得进一步深入研究。如近期发现肿瘤细胞通过外泌体在微环境的相互作用[54]以及PD-L1过表达[55]等免疫因素可引发EGFR-TKIs耐药,但尚需进一步验证和探索抗耐药对策。
在当前EGFR-TKIs抗耐药研究中,EGFR-TKIs新药物的研发速度远远不及临床药物耐药的发生速度,且新药物的应用仍无法避免耐药性的再次出现,新药物与新耐药机制的对抗终将是场拉锯战、持久战,且很难避免后者占据上风。因此,在研发新药物以针对耐药突变的同时,通过研究综合治疗手段例如联合用药、多靶点治疗、中医药辅助治疗等方式,增加现有EGFR-TKIs疗效或延缓耐药的发生时间,可能是探索抗耐药治疗的另一种更有效率的方式。
[1] |
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: a Cancer Journal for Clinicians, 2021, 71(3): 209-249. DOI:10.3322/caac.21660 |
[2] |
GRIDELLI C, ROSSI A, CARBONE D P, et al. Non-small-cell lung cancer[J]. Nature Reviews Disease Primers, 2015, 1: 15009. DOI:10.1038/nrdp.2015.9 |
[3] |
SUDA K, MITSUDOMI T, SHINTANI Y, et al. Clinical impacts of EGFR mutation status: analysis of 5780 surgically resected lung cancer cases[J]. The Annals of Thoracic Surgery, 2021, 111(1): 269-276. |
[4] |
ZHANG Y L, YAO Y, XU Y P, et al. Pan-cancer circulating tumor DNA detection in over 10, 000 Chinese patients[J]. Nature Communications, 2021, 12(1): 11. |
[5] |
ZHENG S B, WANG X D, FU Y, et al. Targeted next-gene-ration sequencing for cancer-associated gene mutation and copy number detection in 206 patients with non-small-cell lung can-cer[J]. Bioengineered, 2021, 12(1): 791-802. DOI:10.1080/21655979.2021.1890382 |
[6] |
张世强, 张旭东, 王保庆, 等. 晚期非小细胞肺癌患者外周血游离DNA中EGFR突变与靶向药物一线治疗疗效的相关性[J]. 山西医科大学学报, 2015, 46(7): 645-648. DOI:10.13753/j.issn.1007-6611.2015.07.010 |
[7] |
GREENHALGH J, BOLAND A, BATES V, et al. First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer[J]. The Cochrane Database of Systematic Reviews, 2021, 3: CD010383. |
[8] |
RIESS J W, GANDARA D R, FRAMPTON G M, et al. Diverse EGFR exon 20 insertions and co-occurring molecular al- terations identified by comprehensive genomic profiling of NSCLC[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2018, 13(10): 1560-1568. DOI:10.1016/j.jtho.2018.06.019 |
[9] |
杨广建, 王燕. 表皮生长因子受体基因20号外显子插入突变型非小细胞肺癌的治疗现状与展望[J]. 中华肿瘤杂志, 2020, 42(1): 22-29. DOI:10.3760/cma.j.issn.0253-3766.2020.01.003 |
[10] |
HE M, CAPELLETTI M, NAFA K, et al. EGFR exon 19 insertions: a new family of sensitizing EGFR mutations in lung adenocarcinoma[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2012, 18(6): 1790-1797. DOI:10.1158/1078-0432.CCR-11-2361 |
[11] |
NAIDOO J, SIMA C S, RODRIGUEZ K, et al. Epidermal growth factor receptor exon 20 insertions in advanced lung adenocarcinomas: clinical outcomes and response to erlotinib[J]. Cancer, 2015, 121(18): 3212-3220. |
[12] |
KOSAKA T, TANIZAKI J, PARANAL R M, et al. Response heterogeneity of EGFR and HER2 exon 20 insertions to covalent EGFR and HER2 inhibitors[J]. Cancer Research, 2017, 77(10): 2712-2721. |
[13] |
张玉萍, 万继兰, 王慧, 等. 非小细胞肺癌838例EGFR、KRAS基因突变状态及临床意义[J]. 诊断病理学杂志, 2020, 27(9): 644-648. |
[14] |
HUANG L H, FU L W. Mechanisms of resistance to EGFR tyrosine kinase inhibitors[J]. Acta Pharmaceutica Sinica B, 2015, 5(5): 390. |
[15] |
ZHANG Q, WANG J H, LI X, et al. Clinical analysis of 107 NSCLC patients harboring KRAS mutation[J]. Chinese Journal of Lung Cancer, 2016, 19(5): 257-262. |
[16] |
WANG F, DIAO X Y, ZHANG X, et al. Identification of genetic alterations associated with primary resistance to EGFR-TKIs in advanced non-small-cell lung cancer patients with EGFR sensitive mutations[J]. Cancer communications (London, England), 2019, 39(1): 7. |
[17] |
SOS M L, KOKER M, WEIR B A, et al. PTEN loss contri-butes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR[J]. Cancer Research, 2009, 69(8): 3256-3261. |
[18] |
ZHAO Y, WANG H, HE C. Drug resistance of targeted the-rapy for advanced non-small cell lung cancer harbored EGFR mutation: from mechanism analysis to clinical strategy[J]. Journal of Cancer Research and Clinical Oncology, 2021, 147(12): 3653-3664. |
[19] |
FUJITA Y, SUDA K, KIMURA H, et al. Highly sensitive detection of EGFR T790M mutation using colony hybridization predicts favorable prognosis of patients with lung cancer harboring activating EGFR mutation[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2012, 7(11): 1640-1644. |
[20] |
KOBAYASHI S, BOGGON T J, DAYARAM T, et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib[J]. The New England Journal of Medicine, 2005, 352(8): 786-792. |
[21] |
刘慧慧, 王孟昭, 胡克, 等. EGFR-TKI在非小细胞肺癌中耐药机制的研究进展[J]. 中国肺癌杂志, 2013, 16(10): 535-540. |
[22] |
王如坤, 张振亮, 邱斌, 等. 奥希替尼治疗EGFR T790M阳性非小细胞肺癌的临床疗效[J]. 临床肺科杂志, 2019, 24(7): 1257-1260. |
[23] |
LI Z X, ZHAO W, SUN Q, et al. Efficacy of osimertinib for the treatment of previously EGFR TKI treated NSCLC patients: a meta-analysis[J]. Clinical and Translational Oncology, 2020, 22(6): 892-899. |
[24] |
THRESS K S, PAWELETZ C P, FELIP E, et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M[J]. Nature Medicine, 2015, 21(6): 560-562. |
[25] |
ARULANANDA S, DO H, MUSAFER A, et al. Combination osimertinib and gefitinib in C797S and T790M EGFR-mutated non-small cell lung cancer[J]. Journal of Thoracic Onco-logy, 2017, 12(11): 1728-1732. |
[26] |
WANG Z, YANG J J, HUANG J, et al. Lung adenocarcinoma harboring EGFR T790M and in trans C797S responds to combination therapy of first- and third-generation EGFR TKIs and shifts allelic configuration at resistance[J]. Journal of Thoracic Oncology: Official Publication of the International Association for the Study of Lung Cancer, 2017, 12(11): 1723-1727. |
[27] |
JIA Y, YUN C H, PARK E, et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors[J]. Nature, 2016, 534(7605): 129-132. |
[28] |
PAPADIMITRAKOPOULOU V A, WU Y L, HAN J Y, et al. Analysis of resistance mechanisms to osimertinib in patients with EGFR T790M advanced NSCLC from the AURA3 study[J]. Annals of Oncology, 2018, 29: viii741. |
[29] |
RAMALINGAM S S, CHENG Y, ZHOU C, et al. Mechanisms of acquired resistance to first-line osimertinib: preliminary data from the phase Ⅲ FLAURA study[J]. Annals of Oncology, 2018, 29: viii740. |
[30] |
ENGELMAN J A, ZEJNULLAHU K, MITSUDOMI T, et al. MET amplification leads to gefitinib resistance in lung can-cer by activating ERBB3 signaling[J]. Science (New York, N Y), 2007, 316(5827): 1039-1043. |
[31] |
ORTIZ-CUARAN S, SCHEFFLER M, PLENKER D, et al. Heterogeneous mechanisms of primary and acquired resistance to third-generation EGFR inhibitors[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2016, 22(19): 4837-4847. |
[32] |
张宁宁. 非小细胞肺癌靶向治疗和耐药机制研究[D]. 北京: 北京协和医学院, 2016.
|
[33] |
SPIGEL D R, ERVIN T J, RAMLAU R A, et al. Rando- mized phase Ⅱ trial of Onartuzumab in combination with erlo-tinib in patients with advanced non-small-cell lung cancer[J]. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 2013, 31(32): 4105-4114. |
[34] |
LIANG H G, WANG M Z. MET oncogene in non-small cell lung cancer: mechanism of MET dysregulation and agents targeting the HGF/c-met axis[J]. OncoTargets and Therapy, 2020, 13: 2491-2510. |
[35] |
苟兰英. 晚期非小细胞肺癌MET/T790M共存的临床和分子特征及MET-TKI耐药机制研究[D]. 广州: 南方医科大学, 2016.
|
[36] |
TAKEZAWA K, PIRAZZOLI V, ARCILA M E, et al. HER2 amplification: a potential mechanism of acquired resistance to EGFR inhibition in EGFR-mutant lung cancers that lack the second-site EGFRT790M mutation[J]. Cancer Discovery, 2012, 2(10): 922-933. |
[37] |
PILLAI R N, BEHERA M, BERRY L D, et al. HER2 mutations in lung adenocarcinomas: a report from the Lung Cancer Mutation Consortium[J]. Cancer, 2017, 123(21): 4099-4105. |
[38] |
LA MONICA S, CRETELLA D, BONELLI M, et al. Trastuzumab emtansine delays and overcomes resistance to the third-generation EGFR-TKI osimertinib in NSCLC EGFR mutated cell lines[J]. Journal of Experimental & Clinical Cancer Research: CR, 2017, 36(1): 174. |
[39] |
YOCHUM Z A, CADES J, WANG H L, et al. Targeting the EMT transcription factor TWIST1 overcomes resistance to EGFR inhibitors in EGFR-mutant non-small-cell lung cancer[J]. Oncogene, 2019, 38(5): 656-670. |
[40] |
RIBATTI D, TAMMA R, ANNESE T. Epithelial-mesenchymal transition in cancer: a historical overview[J]. Translatio-nal Oncology, 2020, 13(6): 100773. |
[41] |
LI L, GU X J, YUE J N, et al. Acquisition of EGFR TKI resistance and EMT phenotype is linked with activation of IGF1R/NF-κB pathway in EGFR-mutant NSCLC[J]. Oncotarget, 2017, 8(54): 92240-92253. |
[42] |
YU H A, ARCILA M E, REKHTMAN N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J]. Clinical Cancer Research: an Official Journal of the Ame-rican Association for Cancer Research, 2013, 19(8): 2240-2247. |
[43] |
LEE J K, LEE J, KIM S, et al. Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas[J]. Journal of Clinical Oncology, 2017, 35(26): 3065-3074. |
[44] |
RUDIN C M, GIACCONE G, ISMAILA N. Treatment of small-cell lung cancer: American society of clinical oncology endorsement of the American college of chest physicians guideline[J]. Journal of Oncology Practice, 2016, 12(1): 83-86. |
[45] |
SHI P Y, OH Y T, DENG L, et al. Overcoming acquired resistance to AZD9291, A third-generation EGFR inhibitor, through modulation of MEK/ERK-dependent BIM and mcl-1 degradation[J]. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research, 2017, 23(21): 6567-6579. |
[46] |
ZHAO R, ZHOU S, XIA B, et al. AT-101 enhances gefitinib sensitivity in non-small cell lung cancer with EGFR T790M mutations[J]. BMC Cancer, 2016, 16: 491. |
[47] |
PERVUSHIN N V, SENICHKIN V V, ZHIVOTOVSKY B, et al. Mcl-1 as a "barrier" in cancer treatment: can we target it now[J]. International Review of Cell and Molecular Biology, 2020, 351: 23-55. |
[48] |
XIANG W G, YANG C Y, BAI L C. MCL-1 inhibition in cancer treatment[J]. OncoTargets and Therapy, 2018, 11: 7301-7314. |
[49] |
ROSELL R, KARACHALIOU N, MORALES-ESPINOSA D, et al. Adaptive resistance to targeted therapies in cancer[J]. Translational Lung Cancer Research, 2013, 2(3): 152-159. |
[50] |
BLAKELY C M, PAZARENTZOS E, OLIVAS V, et al. NF-κB-activating complex engaged in response to EGFR oncogene inhibition drives tumor cell survival and residual disease in lung cancer[J]. Cell Reports, 2015, 11(1): 98-110. |
[51] |
LEE H J, ZHUANG G L, CAO Y, et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells[J]. Cancer Cell, 2014, 26(2): 207-221. |
[52] |
MA P F, FU Y J, CHEN M J, et al. Adaptive and acquired resistance to EGFR inhibitors converge on the MAPK pathway[J]. Theranostics, 2016, 6(8): 1232-1243. |
[53] |
周烨, 顾玮铭, 梁倩, 等. 丝氨酸生物合成途径介导肺腺癌细胞EGFR-TKIs靶向治疗适应性耐药[J]. 现代生物医学进展, 2019, 19(17): 3218-3224. |
[54] |
WU S C, LUO M, TO K K W, et al. Intercellular transfer of exosomal wild type EGFR triggers osimertinib resistance in non-small cell lung cancer[J]. Molecular Cancer, 2021, 20(1): 17. |
[55] |
PENG S L, WANG R, ZHANG X J, et al. EGFR-TKI resis-tance promotes immune escape in lung cancer via increased PD-L1 expression[J]. Molecular Cancer, 2019, 18(1): 165. |