帕金森病(PD)是第二大常见的神经退行性疾病,其确切病因至今尚未完全明了[1-3],其主要病理特征为黑质致密部多巴胺(DA)能神经元缺失和路易小体(LB)形成,临床主要表现有肌强直、静止性震颤、运动迟缓以及姿势不稳等[4-7]。α-突触核蛋白(α-syn)是SNCA编码的由140个氨基酸组成的小分子蛋白质,是LB的主要成分[8-10]。大量研究结果表明,PD等突触核蛋白病病人脑脊液中的α-syn水平较正常人显著降低[11-12]。然而,长期追踪调查发现,PD病人脑脊液中的α-syn水平会随着疾病进展逐渐回升,而且α-syn水平的升高与PD病人后期运动功能的下降存在紧密联系[13-14]。单胺氧化酶B(MAO-B)是一种线粒体膜蛋白,是单胺类神经递质的主要氧化脱氨酶,可分解DA产生3, 4-二羟基苯基乙醛(DOPAL)等代谢产物[15-16]。有文献报道,α-syn以及α-syn 1~103片段均可直接结合MAO-B而增强其酶活性,最终导致DA能神经元变性[17]。本文通过给予小鼠侧脑室注射不同浓度α-syn,以评价其运动功能以及纹状体和黑质区MAO-B蛋白表达的变化。现将结果报告如下。
1 材料和方法 1.1 实验动物及主要试剂实验动物:SPF级雄性C57BL/6小鼠,8周龄,体质量(20±2)g,购自北京维通利华实验动物技术有限公司,饲养于可自由饮水取食、室温(19±2)℃、湿度(50±5)%、昼夜循环光照(12 h/12 h)的清洁环境中。主要试剂:α-syn购自美国rPeptide公司;酪氨酸羟化酶(TH)一抗购自德国Sigma公司;MAO-B一抗购自美国GeneTex公司;Rabbit Anti-β-actin购自中国博奥森公司;Goat Anti-Rabbit IgG二抗购自中国爱必信公司。
1.2 动物分组与处理将40只实验小鼠随机分为生理盐水组(A组)以及0.04、0.20和2.00 ng α-syn组(B、C、D组),每组10只。小鼠用异戊烷麻醉后固定在脑立体定位仪上。剪开小鼠颅脑背侧皮肤,用体积分数0.03的过氧化氢溶液擦拭颅骨表面至颅缝和前后囟清晰可见。确定坐标(右侧侧脑室立体定位坐标为前囟后0.3 mm、右旁开1.0 mm、深度2.2 mm)后,将长5.2 mm的套管垂直埋入侧脑室2.2 mm。以1 μL/min的流量注射生理盐水或α-syn 2 μL,每天1次,连续7 d。
1.3 转棒实验小鼠在旋转棒上适应2 min后,将旋转棒转速设置为4~40 r/min,使小鼠随旋转棒自主运动,记录小鼠在旋转棒上运动的时间。测量2次(间隔30 min)取平均值。
1.4 免疫印迹法检测TH和MAO-B蛋白表达小鼠断头,根据小鼠大脑图谱取纹状体和黑质样本并称质量。按照25 μL/mg的比例向样本中加入蛋白裂解液,充分研磨后以12 000 r/min离心20 min,取上清,用BCA试剂盒检测蛋白浓度,加入1/4体积的Loading Buffer后95 ℃金属浴5 min。处理好的蛋白样本进行聚丙烯酰胺凝胶电泳后转膜(0.45 μm的PVDF膜)。以50 g/L的脱脂奶粉室温封闭2 h后加入一抗TH(1∶3 000)、MAO-B(1∶1 000)、β-actin(1∶10 000)4 ℃孵育过夜,次日用山羊抗兔二抗(1∶10 000)室温孵育1 h,ECL方法显影。用Image J软件分析条带灰度值,TH和MAO-B蛋白表达水平以目的蛋白与内参β-actin条带灰度值的比值来表示。
1.5 统计学处理应用Prism 5软件进行统计学分析。计量资料以x±s形式表示,采用单因素方差分析(one-way ANOVA检验)进行多组均数的比较,继以Tukey方法进行两两均数间的比较。P < 0.05表示差异有统计学意义。
2 结果 2.1 侧脑室注射不同浓度α-syn对小鼠行为学的影响生理盐水组以及0.04、0.20和2.00 ng α-syn组小鼠在旋转棒上运动的时间分别为(221.867±38.855)、(213.905±63.634)、(145.556±54.844)和(138.111±40.932)s,4组比较差异有统计学意义(F=4.877,P < 0.05)。两两比较结果显示,与生理盐水组相比较,0.04 ng α-syn组小鼠运动时间无明显变化(P > 0.05),而0.20和2.00 ng α-syn组小鼠的运动时间明显缩短,差异具有统计学意义(q=3.907、4.288,P < 0.05)。
2.2 侧脑室注射不同浓度α-syn对纹状体区TH和MAO-B蛋白表达的影响本研究4组小鼠纹状体区TH蛋白表达比较差异均无统计学意义(P > 0.05)。4组小鼠纹状体区MAO-B蛋白表达比较差异有统计学意义(F=9.662,P < 0.05)。两两比较结果显示,与生理盐水组相比较,0.04 ng α-syn组小鼠纹状体区MAO-B蛋白表达水平没有明显的变化(P > 0.05),0.20和2.00 ng的α-syn组小鼠纹状体区MAO-B蛋白表达水平显著升高(q=4.281、6.993,P < 0.05)。见表 1。
表 1 各组小鼠纹状体区TH和MAO-B蛋白表达水平比较(n=6,x±s) |
![]() |
本研究4组小鼠黑质区TH和MAO-B蛋白表达比较差异均无统计学意义(P > 0.05)。两两比较结果显示,与生理盐水组相比,各浓度α-syn组小鼠黑质区TH和MAO-B蛋白表达水平均没有明显改变(P > 0.05)。见表 2。
表 2 各组小鼠黑质区TH和MAO-B蛋白表达水平比较(n=6,x±s) |
![]() |
编码α-syn的SNCA是首个被人们发现的与PD相关的常染色体显性遗传基因[18]。无论是在遗传性PD还是在散发性PD中,α-syn均可以在DA能神经元中积聚形成LB[19]。生理状态下的α-syn通常被认为是舒展的可溶性结构,但当其浓度升高时α-syn易聚合折叠形成寡聚体,对神经元膜有毒性作用,可改变膜渗透性,导致钙大量内流,引起膜除极;也可引起细胞氧化损伤,导致细胞死亡[20]。细胞内的α-syn还可以被释放到细胞外。人的脑脊液和血浆中存在一定浓度的α-syn[21]。大量研究发现,PD病人脑脊液中的α-syn水平降低[11-12],但随着疾病进展,α-syn水平回升且与病人的认知、运动功能紧密相关[13-14]。
单胺氧化酶是在中枢神经系统和外周神经系统中催化DA、5-羟色胺和去甲肾上腺素等单胺类神经递质的主要氧化脱氨酶。MAO-B通过分解DA产生DOPAL并产生活性氧(ROS)物质和内源性神经毒素[16]。年龄相关的MAO-B表达增加与自由基损伤和ROS增加存在密切关联,可导致神经元线粒体功能降低,导致黑质致密部神经元活力降低以至神经变性[22]。MAO-B抑制剂常被作为有效的PD治疗药物[23-24]。本研究结果表明,侧脑室注射α-syn 7 d可引起C57BL/6小鼠纹状体区MAO-B蛋白表达升高和运动功能障碍,但黑质区MAO-B蛋白表达不变。MAO-B主要位于星形胶质细胞,在星形胶质细胞激活时MAO-B蛋白表达明显上调,因此MAO-B可能作为星形胶质细胞激活的生化标记物[25]。α-syn可以通过Toll样受体4(TLR4)激活星形胶质细胞[26]。因此我们推测,纹状体MAO-B表达升高可能与侧脑室注射的α-syn到达纹状体后激活星形胶质细胞有关,这尚需在后续实验中进一步证实。此外,MAO-B是DA酶解途径之一,当MAO-B表达增加时,一方面MAO-B可促进DA分解;另一方面,DA分解产生的DOPAL还可以激活δ分泌酶,在N103位置裂解α-syn。α-syn以及α-syn 1~103片段均可直接结合MAO-B而增强其酶活性[17, 27]。我们推测,MAO-B表达和活性的增加,可能在未造成DA能神经元损伤之前(本实验观察到黑质和纹状体区TH表达均不变)显著促进了纹状体区DA的分解,造成了小鼠运动功能障碍。与其他脑区相比较,黑质中星形胶质细胞分布相对较少[28],这可能是侧脑室注射α-syn未引起黑质区MAO-B蛋白表达变化的原因。
综上所述,侧脑室注射α-syn可引起C57BL/6小鼠纹状体区MAO-B蛋白表达增加和运动功能障碍。本文研究结果为进一步探讨脑脊液中α-syn的变化影响PD疾病进程提供了新的实验思路和理论依据。
[1] |
SPILLANTINI M G, SCHMIDT M L, LEE VIRGINIAM Y, et al. Alpha-synuclein in Lewy bodies[J]. Nature, 1997, 388(6645): 839-840. DOI:10.1038/42166 |
[2] |
BI M X, DU X X, JIAO Q, et al. Expanding the role of proteasome homeostasis in Parkinson's disease: beyond protein breakdown[J]. Cell Death & Disease, 2021, 12(2): 154. |
[3] |
BI M X, JIAO Q, DU X X, et al. Glut9-mediated urate uptake is responsible for its protective effects on dopaminergic neurons in Parkinson's disease models[J]. Frontiers in Molecular Neuroscience, 2018, 11: 21. DOI:10.3389/fnmol.2018.00021 |
[4] |
STEFANOVIC A N D, STÖCKL M T, CLAESSENS M M A E, et al. α-Synuclein oligomers distinctively permeabilize complex model membranes[J]. The FEBS Journal, 2014, 281(12): 2838-2850. DOI:10.1111/febs.12824 |
[5] |
VEYS L, VANDENABEELE M, ORTUÑO-LIZARÁN I, et al. Retinal α-synuclein deposits in Parkinson's disease patients and animal models[J]. Acta Neuropathologica, 2019, 137(3): 379-395. DOI:10.1007/s00401-018-01956-z |
[6] |
BUCCIANTINI M, GIANNONI E, CHITI F, et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases[J]. Nature, 2002, 416(6880): 507-511. DOI:10.1038/416507a |
[7] |
YAN M H, WANG X L, ZHU X W. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease[J]. Free Radical Biology and Medicine, 2013, 62: 90-101. DOI:10.1016/j.freeradbiomed.2012.11.014 |
[8] |
LASHUEL H A, OVERK C R, OUESLATI A, et al. The many faces of α-synuclein: from structure and toxicity to the-rapeutic target[J]. Nature Reviews Neuroscience, 2013, 14(1): 38-48. DOI:10.1038/nrn3406 |
[9] |
FELINSKI E A, QUINN P G. The coactivator dTAF(Ⅱ) 110/hTAF(Ⅱ)135 is sufficient to recruit a polymerase complex and activate basal transcription mediated by CREB[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(23): 13078-13083. DOI:10.1073/pnas.241337698 |
[10] |
WEN A Y, SAKAMOTO K M, MILLER L S. The role of the transcription factor CREB in immune function[J]. Journal of Immunology (Baltimore, Md: 1950), 2010, 185(11): 6413-6419. DOI:10.4049/jimmunol.1001829 |
[11] |
HALL S, ÖHRFELT A, CONSTANTINESCU R, et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders[J]. Archives of Neurology, 2012, 69(11): 1445-1452. DOI:10.1001/archneurol.2012.1654 |
[12] |
MOLLENHAUER B, LOCASCIO J J, SCHULZ-SCHAEFFER W, et al. α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with Parkinsonism: a cohort study[J]. The Lancet Neurology, 2011, 10(3): 230-240. DOI:10.1016/S1474-4422(11)70014-X |
[13] |
HALL S, SUROVA Y, ÖHRFELT A, et al. Longitudinal measurements of cerebrospinal fluid biomarkers in Parkinson's disease[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2016, 31(6): 898-905. DOI:10.1002/mds.26578 |
[14] |
MAJBOUR N K, VAIKATH N N, EUSEBI P, et al. Longitudinal changes in CSF alpha-synuclein species reflect Parkinson's disease progression[J]. Movement Disorders: Official Journal of the Movement Disorder Society, 2016, 31(10): 1535-1542. DOI:10.1002/mds.26754 |
[15] |
MASATO A, PLOTEGHER N, BOASSA D, et al. Impaired dopamine metabolism in Parkinson's disease pathogenesis[J]. Molecular Neurodegeneration, 2019, 14(1): 35. DOI:10.1186/s13024-019-0332-6 |
[16] |
MEISER J, WEINDL D, HILLER K. Complexity of dopamine metabolism[J]. Cell Communication and Signaling: CCS, 2013, 11(1): 34. DOI:10.1186/1478-811X-11-34 |
[17] |
KANG S S, AHN E H, ZHANG Z T, et al. A-synuclein stimulation of monoamine oxidase-B and legumain protease mediates the pathology of Parkinson's disease[J]. The EMBO Journal, 2018, 37(12): e98878. |
[18] |
DENG H, WANG P, JANKOVIC J. The genetics of Parkinson disease[J]. Ageing Research Reviews, 2018, 42: 72-85. DOI:10.1016/j.arr.2017.12.007 |
[19] |
RECASENS A, DEHAY B, BOVÉ J, et al. Lewy body extracts from Parkinson disease brains trigger α-synuclein patho-logy and neurodegeneration in mice and monkeys[J]. Annals of Neurology, 2014, 75(3): 351-362. DOI:10.1002/ana.24066 |
[20] |
DANZER K M, KREBS S K, WOLFF M, et al. Seeding induced by alpha-synuclein oligomers provides evidence for spreading of alpha-synuclein pathology[J]. Journal of Neurochemistry, 2009, 111(1): 192-203. DOI:10.1111/j.1471-4159.2009.06324.x |
[21] |
EL-AGNAF O M, SALEM S A, PALEOLOGOU K E, et al. Alpha-synuclein implicated in Parkinson's disease is present in extracellular biological fluids, including human plasma[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2003, 17(13): 1945-1947. |
[22] |
KOPPULA S, KUMAR H, KIM I S, et al. Reactive oxygen species and inhibitors of inflammatory enzymes, NADPH oxidase, and iNOS in experimental models of Parkinson's disease[J]. Mediators of Inflammation, 2012, 2012: 823902. |
[23] |
NAOI M, MARUYAMA W, SHAMOTO-NAGAI M. Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson's disease[J]. Journal of Neural Transmission (Vienna, Austria: 1996), 2020, 127(2): 131-147. DOI:10.1007/s00702-020-02150-w |
[24] |
YOUDIM M B H. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases[J]. Journal of Neural Transmission (Vienna, Austria: 1996), 2018, 125(11): 1719-1733. DOI:10.1007/s00702-018-1942-9 |
[25] |
TONG J C, RATHITHARAN G, MEYER J H, et al. Brain monoamine oxidase B and A in human Parkinsonian dopamine deficiency disorders[J]. Brain: a Journal of Neurology, 2017, 140(9): 2460-2474. DOI:10.1093/brain/awx172 |
[26] |
SORRENTINO Z A, GIASSON B I, CHAKRABARTY P. α-Synuclein and astrocytes: tracing the pathways from homeostasis to neurodegeneration in Lewy body disease[J]. Acta Neuropathologica, 2019, 138(1): 1-21. DOI:10.1007/s00401-019-01977-2 |
[27] |
WU Z R, XIA Y Y, WANG Z H, et al. C/EBPβ/δ-secretase signaling mediates Parkinson's disease pathogenesis via regulating transcription and proteolytic cleavage of α-synuclein and MAOB[J]. Molecular Psychiatry, 2021, 26(2): 568-585. DOI:10.1038/s41380-020-0687-7 |
[28] |
SONG N, WANG J, JIANG H, et al. Astroglial and microg-lial contributions to iron metabolism disturbance in Parkinson's disease[J]. Biochimica et Biophysica Acta Molecular Basis of Disease, 2018, 1864(3): 967-973. DOI:10.1016/j.bbadis.2018.01.008 |