2. 青岛市中心医院(青岛大学第二临床医学院)中心实验室, 山东 青岛 226042
糖尿病在世界范围内呈爆发性增长,国家糖尿病联盟(IDF)2015年的数据表明,全球成人糖尿病的患病率已达到8.8%,20~79岁人群中有500万人死于糖尿病及其并发症。中国全国慢性非传染性疾病预防控制中心对170 287人的调查结果显示,糖尿病患病率高达10.9%,糖尿病前期患病率为35.7%[1]。糖尿病人群中90%为2型糖尿病,2型糖尿病的主要病因是由基因、环境及饮食等综合因素引起的胰岛素缺乏和胰岛素抵抗。糖尿病及其并发症是致残、降低病人生活质量及导致病人早亡的主要原因,对糖尿病的预防及控制迫在眉睫。
大约90%哺乳动物基因组包含非编码序列,microRNA(miRNA)是一种长为19~23个核苷酸的非编码小RNA。miRNA结合到mRNA的3′端非翻译区,对mRNA进行剪切、降解或去腺苷酸化调控,影响mRNA的完整性,或者通过干扰其翻译进行转录后调控。miRNA在转录后水平调控成千上万个基因,在多个生物学过程中发挥关键作用,如细胞增殖、分化、凋亡和癌变等。有关研究结果表明,miRNA在糖尿病、胃癌及慢性心力衰竭病人中均呈差异性表达[2-4]。miRNA通过作用于多个通路促进胰岛素分泌或调节胰岛素抵抗,可能成为治疗糖尿病的新靶点。因此,明确miRNA在糖尿病发病中的分子作用机制,可能为糖尿病的进一步治疗提供新的靶点。本文主要就目前所知与2型糖尿病发病机制有关的miRNA进行综述。
1 miRNA在β细胞中的作用2004年,POY等[5]首次报道了miR-375可直接调节胰岛分泌。miR-375直接靶向作用于3′-磷酸肌醇依赖性激酶1 mRNA,从而降低胰岛素分泌,3′-磷酸肌醇依赖性激酶1 mRNA是胞内磷脂酰肌醇激酶(PI3K)途径中的关键分子;降低miR-375水平可促进胰岛素分泌。miR-375敲除小鼠表现出高糖血症伴β细胞数量的减少。在糖尿病ob/ob小鼠中可观察到miR-375表达升高。在2型糖尿病病人的胰岛细胞中也发现miR-375的表达升高[6]。这些研究结果表明,miR-375不仅能调节葡萄糖稳态(例如胰岛素基因表达)和胰岛素分泌(通过对胞吐作用的影响),而且在胰腺β细胞的发育、维持和存活中也起重要作用。
miR-9可以负向调节胰岛素的分泌,其作用机制是以靶向作用homeobox2的切口,增加Rab3/Rab27 GTPase效应物granuphilin水平,阻止质膜上β细胞分泌颗粒物,从而抑制胰岛素分泌。miR-124a可负向调节葡萄糖诱导的胰岛素分泌,在2型糖尿病病人的胰腺中其表达是上调的[7]。miR124a2靶向作用于Mtpn和Foxa2 mRNA[7],而Foxa2是胰腺发育的主要调控因子,它通过作用于下游靶点胰腺和十二指肠同源盒1及与胰岛素分泌和葡萄糖代谢相关的基因发挥生物学作用。miR-29可以靶向作用于单羧酸盐转运蛋白1,从而影响胰岛素的释放。miR-29亚种型通过减少Onecut2的表达、增强granuphilin的表达,达到抑制MIN6细胞系和胰岛细胞胰岛素释放。因此,miR-29负向调控葡萄糖刺激的胰岛素分泌。miR-29作为胰岛素刺激的葡萄糖代谢和脂质过氧化的重要调节因子,参与2型糖尿病的发生[8]。miR-182是β细胞特异的miRNA。胰岛β细胞中miR-182的表达水平显著高于胰腺α细胞。通过靶向下调β细胞内α细胞特异性基因和调节胰高血糖素合成的重要转录因子cMaf的表达抑制α细胞表型的形成,可维持β细胞表型的稳定性[9]。miR-182可能对胰岛β细胞表型的维持及功能的调控有重要作用,其表达异常可能参与了糖尿病的发病过程。目前所知与β细胞功能相关的miRNA见表 1。
表 1 与β细胞功能相关的miRNA |
![]() |
研究证实,miRNA参与肥胖病人脂肪细胞的基因表达。Goto-Kakizaki大鼠是一种目前已成熟的2型糖尿病大鼠模型[29],其骨骼肌、肝脏和脂肪组织中miR-29表达增加。在脂肪细胞衍生的3T3-L1细胞系中也发现,高糖血症或者高胰岛素血症均可诱导miR-29的表达[30]。miR-29可调控由FOXA2介导的脂质代谢基因表达,如PPARGC1A、HMGCS2和ABHD5[31]。3T3-L1细胞中miR-29过表达可使胰岛素诱导的葡萄糖摄取减少,导致胰岛素抵抗。胰岛素抵抗的3T3-L1脂肪细胞中miR-320的表达显著上调,miR-320表达增强有助于改善胰岛素的敏感性。应用miR-320拮抗剂干预后,胰岛素抵抗明显增强[32]。miR-320与糖尿病小鼠的胰腺组织学改变密切相关,其相关信号通路为PI3K/Akt信号通路[33]。
miR-103和miR-107在肥胖小鼠中呈高表达状态。沉默miR-103和miR-107可改善脂肪组织和肝脏的胰岛素抵抗[34]。miR-103/107存在于脂肪或肝脏组织中,其靶基因小窝蛋白-1是一种胰岛素受体(Insr)必不可少的调控因子。miR-103/107通过靶向作用于小窝蛋白-1,导致胰岛素抵抗[35]。miR-143在高脂饮食诱导的肥胖小鼠肠系膜脂肪组织及db/db小鼠的肝脏中表达上调[22, 36]。在糖尿病前期,miR-103的表达已明显升高。糖尿病小鼠miR-103和miR-143的表达较非糖尿病小鼠明显升高[35]。降低miR-103和miR-143的表达,血糖水平随之降低[37]。
miRNA let-7可下调骨骼肌中胰岛素-PI3K-mTOR信号通路的蛋白,如Insr、胰岛素样生长因子1受体(Igf1r)、Irs2、Pik3ip1、Akt2、Tsc1和Rictor。缺乏肌肉特异性RNA结合蛋白Lin28a的小鼠和诱导let-7转基因小鼠表现出葡萄糖耐量异常[38]。糖尿病合并动脉硬化的病人let-7表达下降,增强let-7的表达有助于改善血管内皮炎性反应[39]。广泛敲除let-7家族,可改善肝脏和肌肉的胰岛素敏感性,其部分原因是通过Insr和Irs2表达水平的恢复[40]。
miR-122是肝脏特异性miRNA,与胰岛素抵抗、代谢综合征、糖尿病等密切相关[41]。血液中miR-122表达增强的糖耐量异常病人不会进展为糖尿病[42]。ob/ob小鼠和链脲佐菌素诱导的糖尿病小鼠肝脏中的miR-122表达水平均降低[43]。蛋白酪氨酸磷酸酶1b作为miR-122的另一个直接靶点,通过对Insr和Insr底物的酪氨酸残基去磷酸化抑制肝脏胰岛素信号通路。
许多miRNA与胰岛素抵抗紧密相关,受营养、代谢和炎症状态等影响。随着临床技术的发展,miRNA靶向方法如小分子操作以及特异性抑制miRNA的表达和功能等为疾病治疗提供了新的方向,在体内试验确认其治疗特异性、有效性、安全性后,有望用于治疗多种临床疾病,尤其是治疗2型糖尿病和肥胖。目前所知与胰岛素抵抗相关的miRNA见表 2。
表 2 与胰岛素抵抗相关的miRNA |
![]() |
来自意大利的一项关于动脉粥样硬化的前瞻性研究表明,在病人发生2型糖尿病前的数年,其血浆miR-15a、miR-28-3p、miR-29b、miR-126和miR-223等的表达水平已发生改变[60]。NIELSEN等[61]第一次报道了非1型糖尿病儿童与1型糖尿病儿童血清中的12种miRNA(miR-152、miR-30a-5p、miR-181a、miR-24、miR-148a、miR-210、miR-27a、miR-29a、miR-26a、miR-27b、miR-25和miR-200a)的表达水平不同。
近年来,2型糖尿病和其他疾病的基因学检测技术发生了巨大变化。现在高速发展的高通量基因组测序技术可检测单核苷酸多态性(SNPs)的精确信息,目前国际化的HapMap技术也可达到同样目的。近年来,全基因组关联研究(GWAS)通过测定基因组中的SNP位点,已经鉴定出了与2型糖尿病易感性相关的80多个基因[62]。
在应用GWAS的基础上,VAN DE BUNT等[63]鉴定出了调控2型糖尿病易感基因的miRNA,其表达差异可能构成2型糖尿病遗传基础的一部分。糖尿病的主要病理生理学特征是胰岛素分泌不足,许多已筛选出的易感基因与胰岛素分泌不足相关。VAN DE BUNT等[63]将在胰岛细胞中获得的384个miRNA与人类其他组织相对比发现,有40个miRNA在β细胞中特异性高表达。这40个特异性高表达的miRNA包括直接调控胰岛素分泌的miR-375及以往未曾报道的与糖尿病有关的miR-27b-3p和miR-192-5p。实际上,GWAS数据已经使用糖尿病遗传复制和荟萃分析的数据组合(DIAGRAM)进行了深入的分析[64]。2型糖尿病的几个易感位点就是通过DIAGRAM筛选基因组编码区胰岛表达的miRNA前体重叠区域发现的。最值得注意的是,胰腺β细胞特异性miRNA靶基因也是2型糖尿病的易感基因,如AP3S2、CNK16、NOTCH2、SCL30A8、VPS26A和WFS1等,这些基因的多态性均与胰岛素分泌减少有关[63]。
4 结语许多研究结果都阐述了miRNA在代谢性疾病——糖尿病的病理生理学中发挥的功能作用,以及在建立和(或)维持β细胞特性及功能过程中发挥的作用。虽然已经在小鼠和人类中鉴定了数千种miRNA,并且证实几十个miRNA与糖尿病有关,但它们的确切作用机制在很大程度上仍然未完全明了,这有待于进一步研究。此外,近年来,随着对2型糖尿病病理生理机制的进一步研究,筛选出2型糖尿病的异常表达miRNA作为其潜在生物标志物成为研究热点。不断深入认识miRNA,进一步了解其功能特点,可为糖尿病潜在的发病机制和遗传易感性研究提供新的视点,尤其是在调控β细胞功能和胰岛素抵抗方面。
[1] |
WANG L M, GAO P, ZHANG M, et al. Prevalence and ethnic pattern of diabetes and prediabetes in China in 2013[J]. JAMA, 2017, 317(24): 2515-2523. DOI:10.1001/jama.2017.7596 |
[2] |
MELNIK B C. Milk exosomal miRNAs: potential drivers of AMPK-to-mTORC1 switching in β-cell de-differentiation of type 2 diabetes mellitus[J]. Nutr Metab, 2019, 16: 85. DOI:10.1186/s12986-019-0412-1 |
[3] |
OHZAWA H, KUMAGAI Y, YAMAGUCHI H, et al. Exosomal microRNA in peritoneal fluid as a biomarker of peritoneal metastases from gastric cancer[J]. Ann Gastroenterol Surg, 2020, 4(1): 84-93. |
[4] |
FOINQUINOS A, BATKAI S, GENSCHEL C, et al. Preclinical development of a miR-132 inhibitor for heart failure treatment[J]. Nat Commun, 2020, 11(1): 633. |
[5] |
POY M N, ELIASSON L, KRUTZFELDT J, et al. A pancreatic islet-specific microRNA regulates insulin secretion[J]. Nature, 2004, 432(7014): 226-230. DOI:10.1038/nature03076 |
[6] |
ZHAO H L, GUAN J, LEE H M, et al. Up-regulated pancreatic tissue microRNA-375 associates with human type 2 diabetes through beta-cell deficit and islet amyloid deposition[J]. Pancreas, 2010, 39(6): 843-846. DOI:10.1097/MPA.0b013e3181d12613 |
[7] |
SEBASTIANI G, PO A, MIELE E, et al. MicroRNA-124a is hyperexpressed in type 2 diabetic human pancreatic islets and negatively regulates insulin secretion[J]. Acta Diabetol, 2015, 52(3): 523-530. |
[8] |
MASSART J, SJÖGREN R J O, LUNDELL L S, et al. Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle[J]. Diabetes, 2017, 66(7): 1807-1818. DOI:10.2337/db17-0141 |
[9] |
KLEIN D, MISAWA R, BRAVO-EGANA V, et al. MicroRNA expression in alpha and beta cells of human pancreatic islets[J]. PLoS One, 2013, 8(1): e55064. DOI:10.1371/journal.pone.0055064 |
[10] |
GURUNG B, MUHAMMAD A B, HUA X X. Menin is required for optimal processing of the microRNA let-7a[J]. J Biol Chem, 2014, 289(14): 9902-9908. DOI:10.1074/jbc.M113.520692 |
[11] |
WANG Y, LIU J, LIU C, et al. MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells[J]. Diabetes, 2013, 62(3): 887-895. DOI:10.2337/db12-0451 |
[12] |
LATREILLE M, HAUSSER J, STVTZER I, et al. MicroRNA-7a regulates pancreatic β cell function[J]. J Clin Investig, 2014, 124(6): 2722-2735. DOI:10.1172/JCI73066 |
[13] |
HU D Z, WANG Y, ZHANG H Y, et al. Identification of miR-9 as a negative factor of insulin secretion from beta cells[J]. Journal of Physiology and Biochemistry, 2018, 74(2): 291-299. DOI:10.1007/s13105-018-0615-3 |
[14] |
SUN L L, JIANG B G, LI W T, et al. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression[J]. Diabetes Res Clin Pract, 2011, 91(1): 94-100. DOI:10.1016/j.diabres.2010.11.006 |
[15] |
ZHANG Z W, ZHANG L Q, DING L, et al. MicroRNA-19b downregulates insulin 1 through targeting transcription factor NeuroD1[J]. FEBS Letters, 2011, 585(16): 2592-2598. DOI:10.1016/j.febslet.2011.06.039 |
[16] |
BAGGE A, CLAUSEN T R, LARSEN S, et al. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion[J]. Biochem Biophys Res Commun, 2012, 426(2): 266-272. |
[17] |
LU H M, HAO L Y, LI S T, et al. Elevated circulating stearic acid leads to a major lipotoxic effect on mouse pancreatic beta cells in hyperlipidaemia via a miR-34a-5p-mediated PERK/ p53-dependent pathway[J]. Diabetologia, 2016, 59(6): 1247-1257. DOI:10.1007/s00125-016-3900-0 |
[18] |
BAROUKH N N, VAN OBBERGHEN E. Function of microRNA-375 and microRNA-124a in pancreas and brain[J]. FEBS J, 2009, 276(22): 6509-6521. DOI:10.1111/j.1742-4658.2009.07353.x |
[19] |
HENNESSY E, CLYNES M, JEPPESEN P B, et al. Identifification of microRNAs with a role in glucose stimulated insulin secretion by expression profifiling of MIN6 cells[J]. Biochem Biophys Res Commun, 2010, 396(2): 457-462. |
[20] |
NESCA V, GUAY C, JACOVETTI C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes[J]. Diabetologia, 2013, 56(10): 2203-2212. DOI:10.1007/s00125-013-2993-y |
[21] |
JORDAN S D, KRVGER M, WILLMES D M, et al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism[J]. Nat Cell Biol, 2011, 13(4): 434-446. |
[22] |
KANG M H, ZHANG L H, WIJESEKARA N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145[J]. Arterioscler Thromb Vasc Biol, 2013, 33(12): 2724-2732. |
[23] |
MELKMAN-ZEHAVI T, OREN R, KREDO-RUSSO S, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors[J]. The EMBO Journal, 2011, 30(5): 835-845. |
[24] |
TATTIKOTA S G, RATHJEN T, MCANULTY S J, et al. Argonaute2 mediates compensatory expansion of the pancreatic β cell[J]. Cell Metab, 2014, 19(1): 122-134. DOI:10.1016/j.cmet.2013.11.015 |
[25] |
BAO L D, FU X D, SI M W, et al. MicroRNA-185 targets SOCS3 to inhibit beta-cell dysfunction in diabetes[J]. PLoS One, 2015, 10(2): e0116067. |
[26] |
LOCKE J M, DA SILVA XAVIER G, DAWE H R, et al. Increased expression of miR-187 in human islets from individuals with type 2 diabetes is associated with reduced glucose-stimulated insulin secretion[J]. Diabetologia, 2014, 57(1): 122-128. |
[27] |
XU G L, CHEN J Q, JING G, et al. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204[J]. Nat Med, 2013, 19(9): 1141-1146. |
[28] |
EL OUAAMARI A, BAROUKH N, MARTENS G A, et al. miR-375 targets 3'-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells[J]. Diabetes, 2008, 57(10): 2708-2717. DOI:10.2337/db07-1614 |
[29] |
HE A, ZHU L, GUPTA N, et al. Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes[J]. Mol Endocrinol, 2007, 21(11): 2785-2794. |
[30] |
HERRERA B M, LOCKSTONE H E, TAYLOR J, et al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of type 2 diabetes[J]. Diabetologia, 2010, 53: 1099-1109. |
[31] |
KURTZ C L, PECK B C E, FANNIN E E, et al. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes[J]. Diabetes, 2014, 63(9): 3141-3148. |
[32] |
LING H Y, OU H S, FENG S D, et al. Changes in microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes[J]. Clin Exp Pharmacol Physiol, 2009, 36(9): e32-e39. |
[33] |
MO F F, AN T, ZHANG Z J, et al. Jiang Tang Xiao ke granule play an anti-diabetic role in diabetic mice pancreatic tissue by regulating the mRNAs and microRNAs associated with PI3K-Akt signaling pathway[J]. Frontiers in Pharmacology, 2017, 8: 795. DOI:10.3389/fphar.2017.00795 |
[34] |
TRAJKOVSKI M, HAUSSER J, SOUTSCHEK J, et al. MicroRNAs 103 and 107 regulate insulin sensitivity[J]. Nature, 2011, 474(7353): 649-653. |
[35] |
VATANDOOST N, AMINI M, IRAJ B, et al. Dysregulated miR-103 and miR-143 expression in peripheral blood mononuclear cells from induced prediabetes and type 2 diabetes rats[J]. Gene, 2015, 572(1): 95-100. |
[36] |
TAKANABE R, ONO K, ABE Y, et al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet[J]. Biochemical and Biophysical Research Communications, 2008, 376(4): 728-732. |
[37] |
EL-GHARBAWY R M, EMARA A M, ABU-RISHA S E S. Zinc oxide nanoparticles and a standard antidiabetic drug restore the function and structure of beta cells in type-2 diabetes[J]. Biomedicine & Pharmacotherapy, 2016, 84: 810-820. |
[38] |
ZHU H, SHYH-CHANG N, SEGRÈ A V, et al. The Lin28/let-7 axis regulates glucose metabolism[J]. Cell, 2011, 147(1): 81-94. |
[39] |
BRENNAN E P, WANG B, MCCLELLAND A, et al. Protective effect of let-7 miRNA family in regulating inflammation in diabetes-associated atherosclerosis[J]. Diabetes, 2017, 66(8): 2266-2277. |
[40] |
DEIULⅡS J A. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics[J]. Int J Obes, 2005, 2016, 40(1): 88-101. |
[41] |
WILLEIT P, SKROBLIN P, MOSCHEN A R, et al. Circulating MicroRNA-122 is associated with the risk of new-onset metabolic syndrome and type-2-diabetes[J]. Diabetes, 2017, 66(2): 347-357. |
[42] |
BRANDT S, ROOS J, INZAGHI E, et al. Circulating levels of miR-122 and nonalcoholic fatty liver disease in pre-pubertal obese children[J]. Pediatr Obes, 2018, 13(3): 175-182. |
[43] |
LI S J, CHEN X, ZHANG H J, et al. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status[J]. J Lipid Res, 2009, 50(9): 1756-1765. |
[44] |
FROST R J, OLSON E N. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs[J]. Proc Natl Acad Sci USA, 2011, 108(52): 21075-21080. |
[45] |
GRANJON A, GUSTIN M P, RIEUSSET J, et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway[J]. Diabetes, 2009, 58(11): 2555-2564. |
[46] |
LAWAN A, MIN K, ZHANG L, et al. Skeletal muscle-specific deletion of MKP-1 reveals a p38 MAPK/JNK/Akt signaling node that regulates obesity-induced insulin resistance[J]. Diabetes, 2018, 67(4): 624-635. |
[47] |
KIM S Y, KIM A Y, LEE H W, et al. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression[J]. Biochem Biophys Res Commun, 2010, 392(3): 323-328. |
[48] |
HUNG Y H, KANKE M, KURTZ C L, et al. Acute suppression of insulin resistance-associated hepatic miR-29 in vivo improves glycemic control in adult mice[J]. Physiol Genom, 2019, 51(8): 379-389. |
[49] |
LEE J, PADHYE A, SHARMA A Y, et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition[J]. J Biol Chem, 2010, 285(17): 12604-12611. |
[50] |
CHEN Y H, HENEIDI S, LEE J M, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance[J]. Diabetes, 2013, 62(7): 2278-2286. DOI:10.2337/db12-0963 |
[51] |
JEONG H J, PARK S Y, YANG W M, et al. The induction of miR-96 by mitochondrial dysfunction causes impaired glycogen synthesis through translational repression of IRS-1 in SK-Hep1 cells[J]. Biochem Biophys Res Commun, 2013, 434(3): 503-508. |
[52] |
YANG Y M, SEO S Y, KIM T H, et al. Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid[J]. Hepatology, 2012, 56(6): 2209-2220. |
[53] |
CHENG Z H, LUO C, GUO Z L. LncRNA-XIST/microRNA-126 sponge mediates cell proliferation and glucose metabolism through the IRS1/PI3K/Akt pathway in glioma[J]. J Cell Biochem, 2020, 121(3): 2170-2183. |
[54] |
LEE E K, LEE M J, ABDELMOHSEN K S, et al. miR-130 suppresses adipogenesis by inhibiting peroxisome proliferatoractivated receptor gamma expression[J]. Mol Cell Biol, 2011, 31(4): 626-638. |
[55] |
GOK O, KARAALI Z, ERGEN A, et al. Serum sirtuin 1 protein as a potential biomarker for type 2 diabetes: increased expression of sirtuin 1 and the correlation with microRNAs[J]. J Res Med Sci: Off J Isfahan Univ Med Sci, 2019, 24: 56. |
[56] |
DOU L, ZHAO T, WANG L L, et al. miR-200s contribute to interleukin-6 (IL-6)-induced insulin resistance in hepatocytes[J]. Journal of Biological Chemistry, 2013, 288(31): 22596-22606. |
[57] |
PENG J, ZHOU Y, DENG Z, et al. miR-221 negatively regulates inflammation and insulin sensitivity in white adipose tissue by repression of sirtuin-1 (SIRT1)[J]. J Cell Biochem, 2018, 119(8): 6418-6428. |
[58] |
ISHIDA M, SHIMABUKURO M, YAGI S, et al. MicroRNA-378 regulates adiponectin expression in adipose tissue:a new plausible mechanism[J]. PLoS One, 2014, 9(11): e111537. |
[59] |
KORNFELD J W, BAITZEL C, KÖNNER A C, et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b[J]. Nature, 2013, 494(7435): 111-115. |
[60] |
ZAMPETAKI A, KIECHL S, DROZDOV I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes[J]. Circ Res, 2010, 107(6): 810-817. |
[61] |
NIELSEN LB, WANG C, SØRENSEN K, et al. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression[J]. Exp Diabetes Res, 2012, 2012: 896362. |
[62] |
IMAMURA M, TAKAHASHI A, YAMAUCHI T N, et al. Genome-wide association studies in the Japanese population identify seven novel loci for type 2 diabetes[J]. Nat Commun, 2016, 28(7): 10531. |
[63] |
VAN DE BUNT M, GAULTON K J, PARTS L, et al. The miRNA profile of human pancreatic islets and beta-cells and relationship to type 2 diabetes pathogenesis[J]. PLoS One, 2013, 8(1): e55272. |
[64] |
MORRIS A P, VOIGHT B F, TESLOVICH T M, et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes[J]. Nat Genet, 2012, 44(9): 981-990. DOI:10.1038/ng.2383 |