炎症与中枢神经系统损伤和神经系统疾病有关,包括脑卒中、阿尔茨海默病、帕金森病和多发性硬化症等[1-4]。脂质运载蛋白-2(Lcn2)是一种分子量为25 000的糖蛋白,是脂质运载蛋白家族的2号成员。Lcn2在细胞死亡、存活、迁移、入侵和铁的传递等多种细胞进程中发挥不同的调节作用[5-6]。当机体处于炎症状态时,Lcn2被高度上调,在调节肝脏和大脑巨噬细胞活化中发挥作用[7-8]。已有研究结果显示,中枢神经系统中的神经元、胶质细胞均是Lcn2的细胞来源[9-10]。尤其是在胶质细胞中,Lcn2在脑出血、脊髓损伤、慢性炎症性疼痛和缺血性脑卒中表达上调,参与疾病发生发展[11-13]。铁是大脑中最丰富的氧化还原活性金属,铁代谢失调与多种神经退行性疾病的发病有关[14]。在帕金森病(PD)中,铁沉积和炎症反应均参与多巴胺能神经元的选择性损伤。然而,细胞内铁负载或铁螯合对炎症状态下Lcn2蛋白表达的影响未见报道。本研究用脂多糖(LPS)处理BV2小胶质细胞,观察铁负载以及铁螯合状态对LPS诱导的BV2小胶质细胞Lcn2蛋白表达的影响。
1 材料和方法 1.1 实验材料BV2小胶质细胞购于中国科学院上海细胞库;DMEM高糖培养液、胎牛血清(FBS)均购于以色列Biological Industries(BI)公司;枸橼酸铁胺(FAC)、去铁胺(DFO)、LPS购于美国Sigma公司;β-actin抗体购于北京博奥森公司;Lcn2抗体购于美国R&D SYSTEM公司;HRP-IGg标记的二抗购于英国abcam公司;PVDF膜、ECL发光液均购于美国Millipore公司;其他试剂均为国产分析纯。
1.2 实验分组及处理将细胞以2×104/cm2密度接种于6孔板,每孔加入2 mL细胞混悬液培养。以60%~70%细胞融合用于实验。为观察铁负载对Lcn2蛋白表达的影响,将细胞随机分为对照组、FAC组、LPS组、FAC+ LPS组,FAC组、LPS组先加入细胞培养液,4 h后更换为100 μmol/ L FAC或1 mg/L LPS处理24 h;FAC+LPS组先加100 μmol/L FAC预处理,4 h后更换为1 mg/L LPS处理24 h。为观察铁螯合对Lcn2的影响,将细胞随机分为对照组、DFO组、LPS组、DFO+LPS组,DFO组、LPS组先加入细胞培养液,4 h以后更换为100 μmol/L DFO或1 mg/L LPS继续处理24 h;DFO+LPS组先加入100 μmol/L DFO预处理,4 h后更换为1 mg/L LPS处理24 h。所有对照组均应用无血清细胞培养液处理。
1.3 蛋白质免疫印迹实验检测Lcn2蛋白表达药物处理结束后,收集6孔板内细胞蛋白,使用BCA蛋白定量试剂盒检测蛋白浓度,按照每孔总蛋白20 μg计算上样量,应用SDS-PAGE凝胶电泳(80 V、40 min,120 V、90 min),然后使用电转仪(300 mA、90 min)湿转到0.22 μm的PVDF膜上,加入50 g/L脱脂奶粉于室温摇床孵育2 h,加入Lcn2(1:1 000)和β-actin(1:5 000)一抗于4 ℃摇床孵育过夜,24 h后分别加入山羊抗兔(1:5 000)、兔抗山羊(1:5 000)的HRP-IgG二抗室温孵育1 h,然后用TBST溶液洗3次,每次10 min,ECL发光液显影后用Image J软件分析Lcn2蛋白表达。
1.4 统计学处理应用SPSS 22.0软件进行统计学处理,计量资料结果以x±s表示,多因素影响的组间比较采用析因设计的方差分析。以P < 0.05表示差异有统计学意义。
2 结果 2.1 FAC对LPS诱导的Lcn2蛋白表达的影响对照组、FAC组、LPS组、FAC+LPS组Lcn2蛋白表达水平分别为0.747±0.099、0.756±0.062、1.095±0.095和0.937±0.102(n=6)。析因设计方差分析显示,FAC和LPS两种因素不存在交互作用(F=4.182,P>0.05),因此分析FAC、LPS单独对Lcn2蛋白表达的影响。FAC处理后,Lcn2蛋白表达不变(F=3.394,P>0.05);LPS处理后,Lcn2蛋白的表达则明显上调,差异有统计学意义(F=42.204,P < 0.05)。
2.2 DFO对LPS诱导的Lcn2蛋白表达的影响对照组、DFO组、LPS组、DFO+LPS组Lcn2蛋白表达水平分别为0.725±0.169、0.739±0.272、1.207±0.232和1.068±0.223(n=6)。析因设计方差分析显示,DFO和LPS两种因素不存在交互作用(F=0.454,P>0.05),因此分析FAC、LPS单独对Lcn2蛋白表达的影响。DFO处理后,Lcn2蛋白表达不变(F=0.575,P>0.05);LPS处理后,Lcn2蛋白的表达则明显上调,差异有统计学意义(F=16.579,P < 0.05)。
3 讨论Lcn2为中枢神经系统中的炎症蛋白和铁调节因子,参与神经退行性疾病的发生发展。在生理条件下,正常大脑Lcn2蛋白表达非常低。然而,损伤或炎症可显著上调Lcn2表达,并可能对铁的稳态产生调节作用[15-16]。Lcn2有两种细胞受体:第1种是megalin,它属于一种多配体内吞受体,主要由肾脏上皮细胞表达以促进肾脏Lcn2的重吸收;第2种是24p3R,属于有机阳离子转运家族,在许多组织中表达,并以特别高的水平存在于肾上皮细胞、巨噬细胞、中性粒细胞、小胶质细胞、星形胶质细胞和神经元中[17-18]。在LPS诱导的炎症模型中,LPS诱导中枢神经系统分泌的Lcn2作为激活星形胶质细胞和小胶质细胞的辅助信号,促进脑卒中和脑损伤后的神经血管修复,并对脓毒症所致的脑损伤和行为改变发挥抗炎作用[19-20]。还有研究显示,Lcn2能诱导促炎细胞因子以及诱导型一氧化氮合酶分泌,这可能会造成继发性损伤并阻碍其恢复[11]。对PD动物模型研究显示,黑质中上调的Lcn2能促进神经毒性和神经炎症,并导致黑质纹状体多巴胺能投射的损伤和小鼠运动行为异常[21]。本文研究结果也证实,促炎因素LPS在BV2小胶质细胞中能诱导Lcn2表达上调。
铁是大脑中最丰富的氧化还原活性金属,是各种生理过程的必需微量元素,包括氧转运(通过血红蛋白)、氧化还原反应、神经递质合成、髓鞘产生和许多线粒体功能。但是,由于铁易于释放电子并产生活性氧(ROS),过多的铁蓄积会导致氧化应激和铁死亡,过量的铁还能导致线粒体功能障碍,激活星形胶质细胞和小胶质细胞,这是PD病人多巴胺能神经元易感性的重要原因之一[22]。大量研究显示,PD病人存在铁代谢异常[23-24]。而铁螯合疗法通过降低不稳定的铁的水平能预防和治疗PD小鼠模型[25]。本实验室前期研究结果表明,中脑神经元应用FAC处理4 h或以上时间,细胞内铁含量明显增加,表现为细胞内铁蛋白水平明显上调;应用DFO处理4 h或以上时间,细胞内铁含量明显降低,表现为铁蛋白水平明显下调[26]。有报道指出:当使用外源性铁处理MPTP小鼠时,Lcn2诱导的体内神经毒性增加;但当使用DFO处理时,Lcn2诱导的神经毒性降低[21]。因此我们推测,抑制Lcn2的表达或活性可能有助于保护成人大脑中的SN-Str多巴胺能系统。本文研究结果还显示,无论是FAC还是DFO处理对Lcn2蛋白的表达均无影响,说明细胞内铁含量不影响Lcn2表达。此外,本文结果还显示,无论是铁负载还是铁螯合,对LPS诱导的Lcn2蛋白表达上调均无影响。Lcn2基因表达主要控制在转录水平。核因子-κB(NF-κB)是Lcn2基因转录的最重要调节因子。由于脑损伤不可避免地伴随着炎症反应,NF-κB作为炎症信号通路的主要调节因子,发挥了上调Lcn2基因表达的作用。由于神经元NF-κB活性最小,因此NF-κB依赖的Lcn2基因在中枢神经系统胶质细胞中的表达占主导地位[27]。NF-κB通过与Lcn2基因启动子区结合而激活Lcn2的表达,因此抑制NF-κB通路可明显降低Lcn2的表达[27-29]。推测虽然LPS本身可通过NF-κB途径激活Lcn2表达,但由于小胶质细胞对铁的缓冲能力较强,因此不会增加LPS对Lcn2的调控作用。但在长期处于高铁水平的在体状态下,铁是否会改变炎症诱导的Lcn2表达上调需要进一步研究。
综上所述,在BV2小胶质细胞中,无论是铁负载、铁螯合本身还是预处理对促炎因素LPS诱导的Lcn2蛋白表达均无明显影响。本实验为Lcn2在细胞内铁状态和炎症状态改变时的表达调控提供了一定的实验依据。
[1] |
ANRATHER J, IADECOLA C. Inflammation and stroke: an overview[J]. Neurotherapeutics: the Journal of the American Society for Experimental Neurotherapeutics, 2016, 13(4): 661-670. DOI:10.1007/s13311-016-0483-x |
[2] |
NEWCOMBE E A, CAMATS-PERNA J, MALLONE L S, et al. Inflammation: the link between comorbidities, genetics, and Alzheimer's disease[J]. Journal of Neuroinflammation, 2018, 15(1): 276. DOI:10.1186/s12974-018-1313-3 |
[3] |
TIWARI P C, PAL R. The potential role of neuroinflammation and transcription factors in Parkinson disease[J]. Dialogues in Clinical Neuroscience, 2017, 19(1): 71-80. |
[4] |
PATEJDL R, PENNER I K, NOACK T K, et al. Multiple sclerosis and fatigue: a review on the contribution of inflammation and immune-mediated neurodegeneration[J]. Autoimmunity Reviews, 2016, 15(3): 210-220. DOI:10.1016/j.autrev.2015.11.005 |
[5] |
KEHRER J P. Lipocalin-2: pro-or anti-apoptotic[J]? Cell Biology and Toxicology, 2010, 26(2): 83-89.
|
[6] |
DEVIREDDY L R, GAZIN C, ZHU X C, et al. A cell-surface receptor for lipocalin 24p3 selectively mediates apoptosis and Iron uptake[J]. Cell, 2005, 123(7): 1293-1305. DOI:10.1016/j.cell.2005.10.027 |
[7] |
BORKHAM-KAMPHORST E, VAN DE LEUR E, ZIMMERMANN H W, et al. Protective effects of lipocalin-2 (LCN2) in acute liver injury suggest a novel function in liver homeostasis[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2013, 1832(5): 660-673. DOI:10.1016/j.bbadis.2013.01.014 |
[8] |
WEI Ni, ZHENG Mingzhe, XI Guohua, et al. Role of lipocalin-2 in brain injury after intracerebral hemorrhage[J]. Journal of Cerebral Blood Flow and Metabolism, 2015, 35(9): 1454-1461. DOI:10.1038/jcbfm.2015.52 |
[9] |
JEON S, JHA M K, OCK J, et al. Role of lipocalin-2-Chemokine axis in the development of neuropathic pain following peripheral nerve injury[J]. Journal of Biological Chemistry, 2013, 288(33): 24116-24127. DOI:10.1074/jbc.M113.454140 |
[10] |
MUCHA M, SKRZYPIEC A E, SCHIAVON E, et al. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(45): 18436-18441. DOI:10.1073/pnas.1107936108 |
[11] |
RATHORE K I, BERARD J L, REDENSEK A, et al. Lipocalin 2 plays an immunomodulatory role and has detrimental effects after spinal cord injury[J]. The Journal of Neuroscien- ce: the Official Journal of the Society for Neuroscience, 2011, 31(38): 13412-13419. DOI:10.1523/JNEUROSCI.0116-11.2011 |
[12] |
JHA M K, SANGMIN J, MYUNGWON J, et al. The pivotal role played by lipocalin-2 in chronic inflammatory pain[J]. Experimental Neurology, 2014, 254: 41-53. DOI:10.1016/j.expneurol.2014.01.009 |
[13] |
MYUNGWON J, JONG-HEON K, JANG E, et al. Lipocalin-2 deficiency attenuates neuroinflammation and brain injury after transient middle cerebral artery occlusion in mice[J]. Journal of Cerebral Blood Flow and Metabolism, 2014, 34(8): 1306-1314. DOI:10.1038/jcbfm.2014.83 |
[14] |
WARD R, ZUCCA F A, DUYN J H, et al. The role of Iron in brain ageing and neurodegenerative disorders[J]. Lancet Neurology, 2014, 13(10): 1045-1060. DOI:10.1016/S1474-4422(14)70117-6 |
[15] |
CHIA W J, DAWE G S, ONG W Y. Expression and localization of the iron-siderophore binding protein lipocalin 2 in the normal rat brain and after kainate-induced excitotoxicity[J]. Neurochemistry International, 2011, 59(5): 591-599. DOI:10.1016/j.neuint.2011.04.007 |
[16] |
IP J P, NOCON A L, HOFER M J, et al. Lipocalin 2 in the central nervous system host response to systemic lipopolysaccharide administration[J]. Journal of Neuroinflammation, 2011, 8: 124. DOI:10.1186/1742-2094-8-124 |
[17] |
JHA M K, SHINRYE L, DONG H P, et al. Diverse functio-nal roles of lipocalin-2 in the central nervous system[J]. Neuroscience & Biobehavioral Reviews, 2015, 49: 135-156. |
[18] |
SCHIEFNER A, RODEWALD F, NEUMAIER I, et al. The dimeric crystal structure of the human fertility lipocalin glycodelin reveals a protein scaffold for the presentation of complex glycans[J]. Biochemical Journal, 2015, 466(1): 95-104. DOI:10.1042/BJ20141003 |
[19] |
WU L M, YANG D, LOK J, et al. Lipocalin-2 enhances angiogenesis in rat brain endothelial cells via reactive oxygen species and iron-dependent mechanisms[J]. Journal of Neurochemistry, 2015, 132(6): 622-628. DOI:10.1111/jnc.13023 |
[20] |
XING Changhong, WANG Xiaoshu, CHENG Chongjie, et al. Neuronal production of lipocalin-2 as a Help-Me signal for glial activation[J]. Stroke, 2014, 45(7): 2085-2092. DOI:10.1161/STROKEAHA.114.005733 |
[21] |
KIM B W, JEONG K H, KIM J H, et al. Pathogenic upregulation of glial lipocalin-2 in the parkinsonian dopaminergic system[J]. Journal of Neuroscience, 2016, 36(20): 5608-5622. DOI:10.1523/JNEUROSCI.4261-15.2016 |
[22] |
NATALIA P M, URRUTIA P J, LOURIDO F, et al. Mitochondrial Iron homeostasis and its dysfunctions in neurodege-nerative disorders[J]. Mitochondrion, 2015, 21: 92-105. DOI:10.1016/j.mito.2015.02.001 |
[23] |
DEXTER D T, WELLS F R, AGID F, et al. Increased nigral iron content in postmortem parkinsonian brain[J]. The Lancet, 1987, 330(8569): 1219-1220. DOI:10.1016/S0140-6736(87)91361-4 |
[24] |
AYTON S, LEI P, HARE D J, et al. Parkinson's disease Iron deposition caused by nitric Oxide-induced loss of of β-amyloid precursor protein[J]. Journal of Neuroscience, 2015, 35(8): 3591-3597. DOI:10.1523/JNEUROSCI.3439-14.2015 |
[25] |
KAUR D, YANTIRI F, RAJAGOPALAN S, et al. Genetic or pharmacological Iron chelation prevents MPTP-induced neurotoxicity in vivo:a novel therapy for Parkinson's disease[J]. Neuron, 2003, 37(6): 899-909. DOI:10.1016/S0896-6273(03)00126-0 |
[26] |
WANG Jun, BI Mingxia, LIU Huiying, et al. The protective effect of lactoferrin on ventral mesencephalon neurons against MPP+ is not connected with its Iron binding ability[J]. Scientific Reports, 2015, 5(1): 10729. DOI:10.1038/srep10729 |
[27] |
CUI J, GUO X, LI Q, et al. Hepcidin-to-ferritin ratio is decreased in astrocyte tracellular Alpha-synuclein and Iron exposure[J]. Front Cell Neurosci, 2020, 14: 47. |
[28] |
LI L X, FREI B. Iron chelation inhibits NF-κB mediated adhesion molecule expression by inhibiting p22 phox protein expression and NADPH oxidase activity[J]. Arteriosclerosis Thrombosis and Vascular Biology, 2006, 26(12): 2638-2643. DOI:10.1161/01.ATV.0000245820.34238.da |
[29] |
RYU-SUKE F, TANAKA K, MORIMATSU M, et al. Spermatogonial cell-mediated activation of an IκBζ-independent nuclear factor-κB pathway in sertoli cells induces transcription of the lipocalin-2 gene[J]. Molecular Endocrinology, 2006, 20(4): 904-915. DOI:10.1210/me.2005-0423 |