作为第二大最常见的神经退行性疾病——帕金森病(PD)的症状主要包括静止性震颤、运动迟缓等运动症状[1-4]。越来越多的证据表明,黑质(SN)区铁的过度沉积是PD发病的关键因素之一[5-7]。小胶质细胞是驻留在中枢神经系统中的最丰富的免疫细胞,与神经元在生理和功能上都存在紧密的联系[8],在生理和病理条件下表现出广泛的功能。研究发现,在病理状态下,小胶质细胞可由静止状态转变为激活状态并迁移到损伤部位,分泌促炎或抗炎的细胞因子,减弱或加剧损伤[9]。当大脑受到缺血损伤后,大量小胶质细胞迅速激活并转化为两种不同的激活亚型,即M1型和M2型[10-15]。但高铁对小胶质细胞激活状态的影响目前尚不明确。本实验旨在研究高铁状态下小胶质细胞的激活亚型,以阐明高铁在小胶质细胞激活中的作用。
1 材料与方法 1.1 实验材料原代培养的小胶质细胞(从大鼠乳鼠中脑内获取),DMEM/F12基础培养液、胰酶(美国Hyclone公司),胎牛血清(FBS,美国Gibco公司),青霉素-链霉素溶液(100×,中国北京索莱宝科技有限公司),枸橼酸铁胺(FAC)、D-多聚赖氨酸(美国Sigma公司),ECL发光液(Millipore公司),CD86抗体和CD206抗体(美国R & D System公司)。
1.2 原代小胶质细胞的培养实验前高压灭菌实验器具。150 cm2细胞培养瓶用D-多聚赖氨酸处理过夜,再用高压灭菌后的去离子水洗3次备用。取2个玻璃培养皿,加入基础培养液(盖过底部即可),置于冰上。将乳鼠断颈,用眼科镊剥取中脑置于培养皿中,眼科剪剪碎后,用移液枪将中脑组织块轻轻吹打至消散,将其吸至离心管中,以1 000 r/min离心5 min。弃上清,用完全培养液重悬沉淀,接种于培养瓶中,置于37 ℃、含体积分数0.05 CO2的培养箱中培养。细胞培养7 d后,将细胞培养瓶封口后固定在空气浴恒温摇床上,以230 r/min剧烈震荡2 h。取上清培养液至离心管中,以1 000 r/min离心5 min。弃上清,加入完全培养液重悬沉淀,接种到孔板或培养瓶中。
1.3 实验分组及处理实验分为对照组和FAC处理组。将原代培养的小胶质细胞接种于6孔板中,每孔1.5 mL细胞悬液;第2天分组处理细胞,将两组细胞培养液均换成基础培养液,FAC处理组加用FAC(100 μmol/L)处理,置于37 ℃、含体积分数0.05 CO2的培养箱中孵育24 h。
1.4 蛋白质免疫印迹(Western Blot)检测将6孔板每孔加入80 μL蛋白裂解液,冰上裂解30 min,用刮板刮下贴附在板底的小胶质细胞,用移液枪移入预先标记好的EP管中,在4 ℃下以12 000 r/min离心20 min,吸取上清至另一个EP管中,用BCA试剂盒检测蛋白浓度,加入Loading Buffer,95 ℃煮5 min。SDS-PAGE电泳之后转至PVDF膜上,室温下用50 g/L脱脂奶粉封闭目的条带2 h后,分别加入CD206、CD86和β-actin的一抗,于4 ℃摇床上孵育过夜。用TBST洗3次,每次10 min,再用对应的山羊抗兔的二抗室温孵育1 h,最后以TBST洗3次后应用ECL发光液底物避光孵育1 min,显影。用Image J软件进行分析,结果以目的条带与内参条带灰度值之比表示。
1.5 统计学处理应用SPSS 17.0软件进行统计学处理,实验结果以x±s表示,两独立样本比较采用Student’s t检验,以P<0.05为差异有统计学意义。
2 结果 2.1 FAC对小胶质细胞CD86蛋白表达的影响FAC处理组和对照组细胞内CD86蛋白表达水平分别为1.557±0.336和2.272±0.517(n=6),FAC处理组较对照组明显降低,差异有统计学意义(t=2.160,P<0.05)。
2.2 FAC对小胶质细胞CD206蛋白表达的影响FAC处理组和对照组细胞内CD206蛋白表达水平分别为0.538±0.074和0.367±0.039(n=6),FAC处理组CD206的表达水平明显高于对照组,差异有统计学意义(t=3.543,P<0.05)。
3 讨论PD是世界第二大常见的神经退行性疾病,但迄今为止,其病因尚不明确。研究表明,环境因素、遗传因素、年龄老化、氧化应激均可能参与了PD的发病[5, 16-21]。尸检发现,PD病人脑内SN有大量的铁沉积[6-7]。SN铁的异常沉积,可以导致脑内铁代谢紊乱,是PD发病的关键病因之一[5, 16-21]。神经退行性疾病的病理特征是神经变性,而小胶质细胞的活化通常与神经变性有关[22-25]。在生理条件下,小胶质细胞双向信号对于神经回路的信息传导尤为重要,介导各种脑功能,例如突触可塑性[26-28]。在PD病理状态下,小胶质细胞可以由静止状态转变为激活状态并迁移到损伤部位,而从静止状态到激活状态的转变需要复杂的调控机制,以严格调控小胶质细胞的激活[29]。不同的靶标和受体可能以不同的方式调节小胶质细胞的激活状态,以减弱或加剧神经元的损伤[8, 30-31]。
本实验以从出生24 h内大鼠中脑提取并培养成熟的小胶质细胞作为实验对象,用高浓度的FAC处理小胶质细胞来制备高铁模型,以还原PD病人脑内高铁环境对小胶质细胞的刺激,观察小胶质细胞的激活状态,从而确定高铁环境对小胶质细胞激活状态的影响。CD86为小胶质细胞M1型的标记物,其表达增加提示小胶质细胞被激活为促炎状态,而CD206则是小胶质细胞M2型的标记物,其表达增加则提示小胶质细胞被激活为抗炎状态。本实验结果显示,在高铁环境下,原代培养的小胶质细胞内的CD86表达较对照组明显降低,而CD206表达水平明显高于对照组,差异具有统计学意义。提示在高铁环境下,小胶质细胞被激活为M2状态,可能在保护神经元免受外界损伤中发挥抗炎作用。本研究结果为铁在调控小胶质细胞激活状态中的作用提供了新的证据。
[1] |
KANSARA S, TRIVEDI A, CHEN S, et al. Early diagnosis and therapy of Parkinson's disease: can disease progression be curbed?[J]. Journal of Neural Transmission (Vienna, Austria:1996), 2013, 120(1): 197-210. DOI:10.1007/s00702-012-0840-9 |
[2] |
BARNETT R. Parkinson's disease[J]. Lancet, 2016, 387(10015): 217. DOI:10.1016/S0140-6736(16)00049-0 |
[3] |
GRAYSON M. Parkinson's disease[J]. Nature, 2016, 538(7626): S1. DOI:10.1038/538S1a |
[4] |
KLIETZ M, SCHNUR T, DREXEL S, et al. Association of motor and cognitive symptoms with health-related quality of life and caregiver burden in a German cohort of advanced Parkinson's disease patients[J]. Parkinsons Dis, 2020, 2020: 1-8. |
[5] |
COOKSON M R. The biochemistry of Parkinson's disease[J]. Annual Review of Biochemistry, 2005, 74(1): 29-52. DOI:10.1146/annurev.biochem.74.082803.133400 |
[6] |
DE FARIAS C C, MAES M, BONIFACIO K L, et al. Parkinson's disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways[J]. CNS & Neurological Disorders-Drug Targets, 2017, 16(4): 484-491. |
[7] |
JIANG H, WANG J, ROGERS J, et al. Brain iron metabolism dysfunction in Parkinson's disease[J]. Molecular Neurobiology, 2017, 54(4): 3078-3101. DOI:10.1007/s12035-016-9879-1 |
[8] |
WOLF S A, BODDEKE H W, KETTENMANN H. Microglia in physiology and disease[J]. Annual Review of Physiology, 2017, 79(1): 619-643. DOI:10.1146/annurev-physiol-022516-034406 |
[9] |
HO M S. Microglia in Parkinson's disease[J]. Adv Exp Med Biol, 2019, 1175: 335-353. |
[10] |
WYSS-CORAY T, MUCKE L. Inflammation in neurodege-nerative disease—a double-edged sword[J]. Neuron, 2002, 35(3): 419-432. DOI:10.1016/S0896-6273(02)00794-8 |
[11] |
HANISCH U K. Functional diversity of microglia-how heterogeneous are they to begin with?[J]. Front Cell Neurosci, 2013, 7(65): 65. |
[12] |
KIM C C, NAKAMURA M C, HSIEH C L, et al. Brain trauma elicits non-canonical macrophage activation states[J]. Journal of Neuroinflammation, 2016, 13(1): 117. DOI:10.1186/s12974-016-0581-z |
[13] |
MORGANTI J M, RIPARIP L K, ROSI S, et al. Call off the dog(ma): M1/M2 polarization is concurrent following traumatic brain injury[J]. PLoS One, 2016, 11(1): e0148001. DOI:10.1371/journal.pone.0148001 |
[14] |
TANG Yu, LE Weidong. Differential roles of M1 and M2 microglia in neurodegenerative diseases[J]. Mol Neurobiol, 2016, 53(2): 1181-1194. DOI:10.1007/s12035-014-9070-5 |
[15] |
YANG Xiaodong, XU Shaoqing, QIAN Yiwei, et al. Resveratrol regulates microglia M1/M2 polarization via PGC-1alpha in conditions of neuroinflammatory injury[J]. Brain Behav Immun, 2017, 64: 162-172. DOI:10.1016/j.bbi.2017.03.003 |
[16] |
RANSOHOFF R M. A polarizing question: do M1 and M2 microglia exist?[J]. Nature Neuroscience, 2016, 19(8): 987-991. DOI:10.1038/nn.4338 |
[17] |
FLEMING S M. Mechanisms of gene-environment interactions in Parkinson's disease[J]. Curr Environ Health Rep, 2017, 4(2): 192-199. DOI:10.1007/s40572-017-0143-2 |
[18] |
REEVE A, SIMCOX E, TURNBULL D. Ageing and Parkinson's disease: why is advancing age the biggest risk factor?[J]. Ageing Research Reviews, 2014, 14(100): 19-30. |
[19] |
DAUER W, PRZEDBORSKI S. Parkinson's disease: mechanisms and models[J]. Neuron, 2003, 39(6): 889-909. DOI:10.1016/S0896-6273(03)00568-3 |
[20] |
SHULMAN J M, DE JAGER P L, FEANY M B. Parkin-euroson's disease: genetics and pathogenesis[J]. Annu Rev Pathol, 2011, 6: 193-222. DOI:10.1146/annurev-pathol-011110-130242 |
[21] |
BRAAK H, DEL TREDICI K, RVB U, et al. Staging of brain pathology related to sporadic Parkinson's disease[J]. Neuro-biology of Aging, 2002, 24(2): 197-211. |
[22] |
SULZER D. Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease[J]. Trends in Neurosciences, 2007, 30(5): 244-250. DOI:10.1016/j.tins.2007.03.009 |
[23] |
WANG Ruili, LI Qing, HE Ya, et al. MiR-29c-3p inhibits microglial NLRP3 inflammasome activation by targeting NFAT5 in Parkinson's disease[J]. Genes Cells, 2020. DOI:10.1111/gtc.12764 |
[24] |
WANG Le, GONG Xiaoli, LIU Yang, et al. CD200 maintains the region-specific phenotype of microglia in the midbrain and its role in Parkinson's disease[J]. Glia, 2020. DOI:10.1002/glia.23811 |
[25] |
CHENG Jinbo, LIAO Yajin, DONG Yuan, et al. Microglial autophagy defect causes Parkinson disease-like symptoms by accelerating inflammasome activation in mice[J]. Autophagy, 2020. DOI:10.1080/15548627.2020.1719723 |
[26] |
ZHAN Y, PAOLICELLI R, SFORAZZINI F, et al. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior[J]. Nature Neuroscience, 2014, 17(3): 400-406. DOI:10.1038/nn.3641 |
[27] |
SCHAFER D P, LEHRMAN E K, KAUTZMAN A G, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner[J]. Neuron, 2012, 74(4): 691-705. DOI:10.1016/j.neuron.2012.03.026 |
[28] |
PAOLICELLI R C, BOLASCO G, PAGANI F, et al. Synaptic pruning by microglia is necessary for normal brain development[J]. Science, 2011, 333(648): 1456-1458. |
[29] |
JOERS V, TANSEY M G, MULAS G, et al. Microglial phenotypes in Parkinson's disease and animal models of the di-sease[J]. Prog Neurobiol, 2017, 155: 57-75. DOI:10.1016/j.pneurobio.2016.04.006 |
[30] |
HANISCH U K, KETTENMANN H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain[J]. Nature Neuroscience, 2007, 10(11): 1387-1394. DOI:10.1038/nn1997 |
[31] |
SIERRA A, ABIEGA O, SHAHRAZ A, et al. Janus-faced microglia: beneficial and detrimental consequences of microg-lial phagocytosis[J]. Front Cell Neurosci, 2013, 7: 6. |