2. 菏泽市第二人民医院麻醉科
膝关节置换术是目前治疗膝骨关节病的主要手术方法,其术后均存在不同程度的疼痛。多模式镇痛有助于病人早期下床活动和康复,减少住院时间和治疗费用,提高病人满意度。近年来的研究表明,全麻联合收肌管阻滞(ACB)麻醉病人的术后镇痛效果令人满意[1]。与股神经阻滞相比,该麻醉方法不但表现出了良好的术后镇痛效果[2],同时还避免了对股四头肌肌力的影响。右美托咪定是一种高选择性的α2受体激动剂,具有良好的镇痛、镇静、降低应激反应和抗交感作用,并可以延长局麻药作用时间[3-4]。在以往多项关于右美托咪定复合罗哌卡因用于临床镇痛的研究中,有分别使用0.25、0.50和1.00 μg/kg右美托咪定进行ACB麻醉的[5-10],但对于最适镇痛浓度却没有统一的结论。因此,找出最适浓度对于日后指导临床上全麻联合ACB麻醉术后镇痛的应用具有重要意义。本研究旨在探讨不同剂量右美托咪定复合罗哌卡因超声引导下ACB对膝关节置换术后镇痛效果的影响。
1 资料与方法 1.1 一般资料2018年3—9月,选择在青岛大学附属医院手术室首次行单侧膝关节置换手术的病人120例,男58例,女62例;年龄40~70岁;体质量50~80 kg;美国麻醉师协会(ASA)分级Ⅰ~Ⅱ级。排除标准:已知对任何研究药物过敏者;长期使用大量镇静、镇痛药物者;有认知功能障碍或不能理解视觉模拟评分法(VAS)评分者;既往有神经系统疾病史、凝血功能异常或正接受抗凝治疗者;心、肺、肝、肾等器官功能不全者;窦性心动过缓或房室传导阻滞者。本研究经医院伦理委员会批准,术前详细告知病人及家属并征得其同意,同时签署知情同意书。采用随机数字表法将入选病人随机分为A、B、C、D组,每组30例。各组间一般资料比较差异均无统计学意义(P>0.05)。见表 1。
表 1 各组一般资料比较(n=30, x±s) |
![]() |
病人入手术室后连接心电监护、开放静脉,取仰卧位,患肢外旋15°,在超声引导下经缝匠肌下入路(大腿中部及大腿远端1/3)行患侧ACB(操作均由同一名经验丰富的麻醉医生实施)。A组病人给予3.75 g/L罗哌卡因20 mL;B组给予0.50 μg/kg右美托咪定+3.75 g/L罗哌卡因20 mL;C组病人给予0.75 μg/kg右美托咪定+3.75 g/L罗哌卡因20 mL;D组给予1.00 μg/kg右美托咪定+3.75 g/L罗哌卡因20 mL。待阻滞平面出现后,4组均给予舒芬太尼0.4 μg/kg、顺苯磺酸阿曲库铵0.2 mg/kg、丙泊酚2 mg/kg,诱导插入喉罩,术中泵注丙泊酚和舒芬太尼,维持脑电双频指数(BIS)值40~60。术后拔出喉罩,带静脉镇痛泵入恢复室。镇痛泵配方为舒芬太尼2 μg/kg+欧贝8 mg;镇痛泵参数设置:负荷量2 mL,自控量2 mL,锁定时间15 min。术后疼痛不能耐受时给予曲马多100 mg口服。
1.3 观察指标及评估方法 1.3.1 镇痛效果分别于术后6、12、24、48 h进行VAS疼痛评分:0分,无痛;10分,休息时剧烈疼痛。
1.3.2 镇静程度分别于术后6、12、24、48 h进行Ramsay镇静评分:1分,病人焦虑,躁动不安,不能安静;2分,病人配合,有定向力、安静;3分,嗜睡,能听从指令;4分,浅睡眠状态,可以唤醒;5分,睡眠状态,呼唤反应迟钝;6分,深睡眠状态,呼之不醒。Ramsay镇静评分≥4分视为过度镇静。
1.3.3 镇痛泵有效按压次数和曲马多用量记录术后48 h内镇痛泵有效按压次数和曲马多用量。
1.3.4 术后满意度和术后不良事件术后满意度分为满意、一般、不满意;满意率=表示满意的病人例数/该组病人总数×100%。术后不良事件包括低血压、呼吸抑制和心动过缓等。
1.4 统计学方法采用SPSS 20.0软件进行统计学分析。正态分布的计量资料以x±s表示,多组比较采用单因素方差分析,组间两两比较采用t检验;重复测量数据的两因素多水平分析采用重复测量设计的方差分析。计数资料组间比较采用χ2检验,等级资料组间比较采用等级秩和检验。以P<0.05为差异有统计学意义。
2 结果 2.1 各组术后不同时间点VAS疼痛评分比较术后6、12 h,B、C、D组病人VAS疼痛评分显著低于A组,C、D组病人VAS疼痛评分显著低于B组(F=2.98、3.45,P<0.05);术后24、48 h,各组VAS评分差异均无统计学意义(P>0.05)。见表 2。
表 2 各组术后不同时间点VAS疼痛评分和Ramsay镇静评分比较(n=30, x±s) |
![]() |
术后不同时间点各组Ramsay镇静评分比较,差异均无统计学意义(P>0.05)。见表 2。
2.3 各组曲马多用量和镇痛泵有效按压次数比较术后48 h内,B、C、D组病人曲马多用量、镇痛泵有效按压次数均明显低于A组病人(F=10.26、62.84,t=11.58~69.95,P < 0.05);与B组相比,C、D组病人曲马多用量和镇痛泵有效按压次数明显减少(t=2.05~5.83,P < 0.05);C组与D组比较,曲马多用量和镇痛泵按压次数差异均无统计学意义(P>0.05)。见表 3。
表 3 各组术后48 h内曲马多用量和镇痛泵有效按压次数比较(n=30, x±s) |
![]() |
B、C、D组病人术后满意度均高于A组,差异均有显著性(Z=2.09~3.04,P<0.05)。见表 4。
表 4 各组病人术后满意度比较(n=30,例) |
![]() |
各组病人术后低血压、呼吸抑制和心动过缓等不良事件发生率比较,差异均无统计学意义(P>0.05)。见表 5。
表 5 各组病人术后不良事件比较(n=30,例) |
![]() |
膝关节置换手术时选择合适的麻醉方法和药物配伍,使得局麻药毒性降低并减轻术后疼痛[11],同时又不影响运动神经的阻滞,促进病人及早下床活动,在快速康复外科中尤为重要[12-13]。新型高选择性α2肾上腺素能激动剂右美托咪定作为辅助药静脉输注现已广泛应用于临床,与局麻药复合应用于神经阻滞可延长其作用时间,增强其阻滞效果[14]。超声引导下ACB能明显提高阻滞成功率,保证阻滞效果[10]。有研究表明,与安慰剂组相比,ACB麻醉可以明显减轻全膝关节置换术(TKA)后病人的疼痛[1, 15-16];单侧TKA的ACB麻醉具有良好的镇痛效果和股四头肌强度[17-18];ACB麻醉还可促进术后早期下床活动,有助于预防下肢深静脉血栓形成,增强肌肉力量和步态控制,有效减少住院时间和降低院内摔跤的风险[19-21]。TKA术后疼痛极易引起关节制动,不利于术后早期功能锻炼的实施[21-23]。有效的术后疼痛管理是TKA康复的重要内容,完善的术后镇痛应在有效控制静息疼痛及运动疼痛的同时,保留病人下肢运动功能[24]。有研究者分别将持续ACB麻醉(7.5 g/L罗哌卡因)和生理盐水用于TKA病人的术后辅助镇痛,结果ACB麻醉组术后24 h的吗啡用量明显减少[25]。近年来有研究发现,右美托咪定能增加罗哌卡因的神经阻滞能力[26-27],但其具体机制尚不清楚。
本研究旨在评估罗哌卡因复合3种不同剂量的右美托咪定用于ACB麻醉对膝关节置换术后镇痛效果的影响。超声引导下ACB麻醉已成功应用于膝关节置换术的术后镇痛,该技术安全可靠,几乎可以在所有病例中使用。本研究进一步缩小了不同组间复合使用右美托咪定的剂量间隙,这使得研究结果更加精确、更具有说服力。术后不同时间点VAS疼痛评分结果显示,术后6、12 h,B、C、D组病人的VAS评分明显低于A组,表明复合使用右美托咪定对术后早期疼痛的缓解有显著效果。进一步分析结果显示,0.75 μg/kg右美托咪定复合3.75 g/L罗哌卡因对于术后早期疼痛的缓解具有明显效果,而继续增加右美托咪定剂量至1.00 μg/kg时术后镇痛效果无明显变化,表明0.75 μg/kg右美托咪定复合3.75 g/L罗哌卡因可以最大限度缓解病人术后疼痛。本研究结果还显示,术后48 h内,B、C、D组病人曲马多用量、镇痛泵有效按压次数均明显低于A组,也表明复合应用右美托咪定有效缓解了病人术后早期疼痛。与B组相比,C、D组病人曲马多用量明显较低,镇痛泵有效按压次数明显较少;而C组与D组相比较,曲马多用量和镇痛泵有效按压次数差异均无显著性。这表明在一定范围内增加右美托咪定的用量可以增强联合用药缓解疼痛的效果,而当右美托咪定的复合用量达到一定数值时,镇痛效果不再明显改善。
有研究结果表明,右美托咪定联合ACB麻醉可提供较长时间的镇痛,不影响镇静效果,并可显著改善术后肌力和减少术后镇痛药物消耗[28-29]。随着更好的疼痛缓解,病人的满意度明显也提高。本文结果也证明了这一点。另外,本研究中各组病人术后低血压、呼吸抑制、心动过缓等不良反应发生率差异均无统计学意义,说明右美托咪定作为复合用药应用于ACB麻醉安全性良好。
综上所述,0.75 μg/kg右美托咪定复合3.75 g/L罗哌卡因ACB能有效缓解膝关节置换术后疼痛,减少术后镇痛药物的用量,增加病人舒适度,提高满意度。但鉴于样本数量有限,此结论的准确性还有待进一步的研究;另外,在给予全身麻醉的情况下,术后早期的血流动力学参数和疼痛可能受到影响,这也可能对该研究的结果造成一定的影响。今后研究将加大样本量,采用序贯试验法测定,以提高确定罗哌卡因复合右美托咪定最佳剂量的准确性。
[1] |
GOYAL R, MITTAL G, YADAV A K, et al. Adductor canal block for post-operative analgesia after simultaneous bilateral total knee replacement: a randomised controlled trial to study the effect of addition of dexmedetomidine to ropivacaine[J]. Indian Journal of Anaesthesia, 2017, 61(11): 903-909. DOI:10.4103/ija.IJA_277_17 |
[2] |
MEMTSOUDIS S G, YOO D, STUNDNER O, et al. Subsartorial adductor canal vs femoral nerve block for analgesia after total knee replacement[J]. International Orthopaedics, 2015, 39(4): 673-680. DOI:10.1007/s00264-014-2527-3 |
[3] |
薛智敏, 王世端. 右美托咪定临床应用进展[J]. 青岛大学医学院学报, 2015, 51(3): 366-367, 370. |
[4] |
MARHOFER D, KETTNER S C, MARHOFER P, et al. Dexmedetomidine as an adjuvant to ropivacaine prolongs peripheral nerve block: a volunteer study[J]. British Journal of Anaesthesia, 2013, 110(3): 438-442. |
[5] |
MANUAR M B, MAJUMDAR S, DAS A, et al. Pain relief after arthroscopic knee surgery: a comparison of intra-articular ropivacaine, fentanyl, and dexmedetomidine: a prospective, double-blinded, randomized controlled study[J]. Saudi Journal of Anaesthesia, 2014, 8(2): 233-237. DOI:10.4103/1658-354X.130727 |
[6] |
PANIGRAHI R, ROY R, MAHAPATRA A K, et al. Intra-articular adjuvant analgesics following knee arthroscopy: comparison between single and double dose dexmedetomidine and ropivacaine: a multicenter prospective double-blind trial[J]. Orthopaedic Surgery, 2015, 7(3): 250-255. DOI:10.1111/os.12182 |
[7] |
杨燕青, 何海娟, 王红珠. 右美托咪定混合罗哌卡因收肌管阻滞联合全身麻醉用于膝关节镜手术的效果观察[J]. 中国内镜杂志, 2018, 24(2): 68-74. DOI:10.3969/j.issn.1007-1989.2018.02.014 |
[8] |
GURAJALA I, THIPPARAMPALL A K, DURGA P, et al. Effect of perineural dexmedetomidine on the quality of supraclavicular brachial plexus block with 0.5% ropivacaine and its interaction with general anaesthesia[J]. Indian Journal of Anaesthesia, 2015, 59(2): 89-95. DOI:10.4103/0019-5049.151369 |
[9] |
CHINNAPPA J, SHIVANNA S, PUJARI V S, et al. Efficacy of dexmedetomidine with ropivacaine in supraclavicular brachial plexus block for upper limb surgeries[J]. Journal of Anaesthesiology, Clinical Pharmacology, 2017, 33(1): 81-85. DOI:10.4103/0970-9185.202196 |
[10] |
VOROBEICHIK L, BRULL R, ABDALLAH F W. Evidence basis for using perineural dexmedetomidine to enhance the quality of brachial plexus nerve blocks: a systematic review and meta-analysis of randomized controlled trials[J]. British Journal of Anaesthesia, 2017, 118(2): 167-181. |
[11] |
BOHM E R, MOLODIANOVITSH K, DRAGAN A, et al. Outcomes of unilateral and bilateral total knee arthroplasty in 238, 373 patients[J]. Acta Orthopaedica, 2016, 87(Suppl 1): 1-7. |
[12] |
MARHOFER P, BRUMMETT C M. Safety and efficiency of dexmedetomidine as adjuvant to local anesthetics[J]. Current Opinion in Anaesthesiology, 2016, 29(5): 632-637. DOI:10.1097/ACO.0000000000000364 |
[13] |
FRITSCH G, DANNINGER T, ALLERBERGER K, et al. Dexmedetomidine added to ropivacaine extends the duration of interscalene brachial plexus blocks for elective shoulder surge-ry when compared with ropivacaine alone: a single-center, prospective, triple-blind, randomized controlled trial[J]. Regional Anesthesia and Pain Medicine, 2013, 39(1): 37-47. DOI:10.1097/AAP.0000000000000033 |
[14] |
TIWARI A K, PRASAD A. In response to "Is continuous adductor canal block better than continuous femoral nerve block after total knee arthroplasty? Effect on ambulation ability, early functional recovery and pain control: a randomized controlled trial"[J]. The Journal of Arthroplasty, 2015, 30(3): 515. DOI:10.1016/j.arth.2014.10.012 |
[15] |
YU Junma, SUN Hao, WU Chao, et al. The analgesic effect of ropivacaine combined with dexmedetomidine for incision infiltration after laparoscopic cholecystectomy[J]. Surgical Laparoscopy Endoscopy & Percutaneous Techniques, 2016, 26(6): 449-454. |
[16] |
KIM B S, CHOI J H, BAEK S H, et al. Effects of intraneural injection of dexmedetomidine in combination with ropivacaine in rat sciatic nerve block[J]. Regional Anesthesia and Pain Medicine, 2018, 43(4): 378-384. DOI:10.1097/AAP.0000000000000745 |
[17] |
WANG Cunjin, LONG Fengyun, YANG Liuqing, et al. Efficacy of perineural dexamethasone with ropivacaine in adductor canal block for post-operative analgesia in patients undergoing total knee arthroplasty: a randomized controlled trial[J]. Experimental and Therapeutic Medicine, 2017, 14(4): 3942-3946. DOI:10.3892/etm.2017.4974 |
[18] |
ELKASSABANY N M, ANTOSH S, AHMED M, et al. The risk of falls after total knee arthroplasty with the use of a fe-moral nerve block versus an adductor canal block: a double-blinded randomized controlled study[J]. Anesthesia and Analgesia, 2016, 122(5): 1696-1703. DOI:10.1213/ANE.0000000000001237 |
[19] |
CHAN I A, MASLANY J G, GORMAN K J, et al. Dexmedetomidine during total knee arthroplasty performed under spinal anesthesia decreases opioid use: a randomized-controlled trial[J]. Canadian Journal of Anaesthesia, 2016, 63(5): 569-576. DOI:10.1007/s12630-016-0597-y |
[20] |
ESKANDR A M, EBEID A M. A dose reduction study of local anesthetic with addition of dexmedetomidine on postoperative epidural analgesia after total knee arthroplasty[J]. Egyptian Journal of Anaesthesia, 2016, 32(3): 365-369. DOI:10.1016/j.egja.2016.01.003 |
[21] |
WANG X L, WANG J, MU D L, et al. Dexmedetomidine combined with ropivacaine for continuous femoral nerve block improved postoperative sleep quality in elderly patients after total knee arthroplasty[J]. Zhonghua Yi Xue Za Zhi, 2018, 98(10): 728-732. |
[22] |
DAS A, MAJUMDAR S, KUNDU R, et al. Pain relief in day care arthroscopic knee surgery: a comparison between intra-articular ropivacaine and levobupivacaine: a prospective, double-blinded, randomized controlled study[J]. Saudi Journal of Anaesthesia, 2014, 8(3): 368-373. DOI:10.4103/1658-354X.136435 |
[23] |
SAJEDI P, NEMATI M, MOSAVI S H, et al. A randomized controlled trial for the effectiveness of intraarticular versus intravenous midazolam on pain after knee arthroscopy[J]. Journal of Research in Medical Sciences: the Official Journal of Isfahan University of Medical Sciences, 2014, 19(5): 439-444. |
[24] |
KAMPITAK W, TANAVALEE A, NGARMUKOS S, et al. Does adductor canal block have a synergistic effect with local infiltration analgesia for enhancing ambulation and improving analgesia after total knee arthroplasty?[J]. Knee Surgery & Related Research, 2018, 30(2): 133-141. |
[25] |
BANGERA A, MANASA M, KRISHNA P. Comparison of effects of ropivacaine with and without dexmedetomidine in axillary brachial plexus block: a prospective randomized dou-ble-blinded clinical trial[J]. Saudi Journal of Anaesthesia, 2016, 10(1): 38-44. DOI:10.4103/1658-354X.169473 |
[26] |
RAHIMZADEH P, FAIZ S H, ZIYAEIFARD M, et al. Effectiveness of adding ketamine to ropivacaine infusion via fe-moral nerve catheter after knee anterior cruciate ligament repair[J]. Journal of Research in Medical Sciences: the Official Journal of Isfahan University of Medical Sciences, 2013, 18(8): 632-636. |
[27] |
KORAKI E, STACHTARI C, KAPSOKALYVAS I, et al. Dexmedetomidine as an adjuvant to 0.5% ropivacaine in ultrasound-guided axillary brachial plexus block[J]. Journal of Cli-nical Pharmacy and Therapeutics, 2018, 43(3): 348-352. DOI:10.1111/jcpt.12657 |
[28] |
RASHMI H D, KOMALA H K. Effect of dexmedetomidine as an adjuvant to 0.75% ropivacaine in interscalene brachial ple-xus block using nerve stimulator: a prospective, randomized double-blind study[J]. Anesthesia, Essays and Researches, 2017, 11(1): 134-139. DOI:10.4103/0259-1162.181431 |
[29] |
SHARMA B, RUPAL S, SWAMI A C, et al. Eeffect of addition of dexmedetomidine to ropivacaine 0.2% for femoral nerve block in patients undergoing unilateral total knee replacement: a randomised double blind study[J]. Indian Journal of Anaesthesia, 2016, 60(7): 529. DOI:10.4103/0019-5049.186031 |