文章快速检索 高级检索
  青岛大学学报(医学版)  2020, Vol. 56 Issue (1): 45-49   DOI: 10.11712/jms.2096-5532.2020.56.002
0

基金项目

山东省医药卫生科技发展计划项目(2018WS399);临沂市科技发展计划项目(201818009)

引用本文 [复制中英文]

杨莉, 邱世彦, 徐那, 等. 儿童MELAS线粒体基因突变异质性水平与临床特征的关系[J]. 青岛大学学报(医学版), 2020, 56(1): 45-49.   DOI: 10.11712/jms.2096-5532.2020.56.002
[复制中文]
YANG Li, QIU Shiyan, XU Na, et al. ASSOCIATION OF HETEROGENEITY LEVEL OF MITOCHONDRIAL MELAS MUTATION WITH CLINICAL FEATURES IN CHILDREN[J]. Journal of Qingdao University(Medical Sciences), 2020, 56(1): 45-49.   DOI: 10.11712/jms.2096-5532.2020.56.002
[复制英文]

作者简介

杨莉(1985-),女,硕士,主治医师.

通讯作者

徐丽云(1965-),女,副主任医师。E-mail:yunlixu@163.com.

文章历史

收稿日期:2019-06-22
修订日期:2019-11-11
儿童MELAS线粒体基因突变异质性水平与临床特征的关系
杨莉1 , 邱世彦1 , 徐那1 , 夏冰1 , 李玉芬1 , 徐丽云1,2     
1. 临沂市人民医院儿内一科,山东 临沂 276001;
2. 山东医学高等专科学校儿科学教研室
摘要目的 探讨儿童线粒体脑肌病伴乳酸血症和卒中样发作(MELAS)线粒体基因A3243G点突变异质性水平与临床特征的关系,以期为尽早明确MELAS临床诊断及临床遗传咨询提供依据。方法 研究对象为临沂市人民医院收治的7例MELAS病儿及其家系。回顾性分析病儿的临床表现、实验室检查、线粒体位点点突变检测结果,并根据相关文献报道分析遗传的异质性及阈效应。结果 7例病儿中6例以抽搐为首发症状,1例以头痛、呕吐起病;伴体型瘦小者7例,多毛6例,发热4例,视力障碍3例,智力运动发育落后1例。7例病儿血乳酸水平均升高(5.52~12.00 mmol/L)。7例病儿颅脑MRI均示顶、枕、颞叶异常信号,不符合解剖学血管支配分布。脑电图特点以背景活动慢化为主,1例部分性发作起始部位与颅脑影像学病变部位有高度相关性。7例线粒体脑肌病致病基因均为MT-TL1基因A3243G突变,其中2例为双胞胎兄弟,先症者基因明确诊断后其胞弟基因明确。MELAS病儿A3243G突变率与血乳酸水平呈正相关(r=0.89,P < 0.01),与起病年龄呈负相关(r=-0.84, P < 0.05)。结论 早期筛查家系以及基因检测有助于MELAS的诊断,病儿A3243G突变率高低可能与起病年龄、血乳酸水平存在相关性。
关键词儿童    MELAS综合征    点突变    遗传异质性    
ASSOCIATION OF HETEROGENEITY LEVEL OF MITOCHONDRIAL MELAS MUTATION WITH CLINICAL FEATURES IN CHILDREN
YANG Li1 , QIU Shiyan1 , XU Na1 , XIA Bing1 , LI Yufen1 , XU Liyun1,2     
Department of Pediatrics, Linyi People's Hospital, Linyi 276001, China
ABSTRACT: Objective To investigate the association of the heterogeneity level of mitochondrial gene A3243G mutation with clinical features in children with mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and to provide evidence for early clinical diagnosis of MELAS and clinical genetic counseling. Methods Seven children with MELAS who were admitted to Linyi People's Hospital and their family members were enrolled as subjects, and a retrospective analysis was performed for their clinical data including clinical manifestations, laboratory findings, and mitochondrial gene point mutations. Related articles were reviewed to analyze the genetic heterogeneity and threshold effect. Results Of all 7 children, 6 had convulsion as the initial symptom, and 1 had headache and vomiting at disease onset; of all children, 7 had a lean body type, 6 had excessive hairiness, 4 had pyrexia, 3 had visual impairment, and 1 had intellectual and motor developmental delay. All 7 children had an increase in blood lactate level (5.52-12.00 mmol/L). Brain MRI showed abnormal signals in the parietal, occipital, and temporal lobes in all children, which did not correspond to anatomic vascular distribution. Slow background activity was the main feature of electroencephalography, and 1 child showed high correlation between the location of origin of partial episodes and the location of lesions on brain imaging. The MT-TL1 gene with A3243G mutation was the pathogenic gene for mitochondrial encephalopathy in all 7 children, among whom 2 were twin brothers, and the gene mutation was clarified in the younger bother after a confirmed diagnosis was made based on gene detection in the elder bother. In the children with MELAS, A3243G mutation rate was positively correlated with blood lactate level (r=0.89, P < 0.01) and was negatively correlated with onset age (r=-0.84, P < 0.05). Conclusion Early screening of pedigrees and gene detection may help with the diagnosis of MELAS, and A3243G mutation rate may be correlated with onset age and blood lactate level.
KEY WORDS: child    MELAS syndrome    point mutation    genetic heterogeneity    

文献报道,线粒体脑肌病伴乳酸血症和卒中样发作(MELAS)是由于线粒体DNA发生突变,导致线粒体结构和功能异常,引起细胞能量代谢障碍[1],常累及多个器官,以中枢神经系统、骨骼肌和心肌等高需能部位最为常见,是线粒体脑肌病中最为常见的一种类型,为母系遗传病。MELAS临床表现复杂且缺乏特异性,常被误诊为癫痫、脑炎、脑梗死及脱髓鞘脑病等而延误有效治疗,导致预后较差[2]。虽然近年来国内有关MELAS的研究报道不断增多,但MELAS早期的误诊率仍极高,所以探讨如何早期诊断及治疗就显得尤为重要。本研究对7例MELAS病儿的临床特点、实验室检查、神经电生理、影像学表现及基因检测结果等进行了回顾性分析,并探讨儿童MELAS线粒体基因A3243G点突变异质性水平与临床特征的关系,以期为MELAS的早期临床诊断及临床遗传咨询提供依据。

1 资料与方法 1.1 研究对象

研究对象为我院小儿神经内科2011年1月—2018年12月收治的7例MELAS病儿,男5例,女2例,年龄3~10岁。

1.2 研究方法

回顾性分析MELAS病儿的首发症状、起病年龄、治疗过程、生长发育史、既往疾病史、家族史、体型、皮肤毛发改变、智力倒退程度、血乳酸水平、颅脑影像学特征(部位、信号强度特点等)、脑电图表现(背景活动、痫样放电与影像学的对应关系)等资料。取所有研究对象外周静脉血2 mL,对线粒体基因进行二代测序及多重连接探针扩增技术(MLPA)检测,观察线粒体基因A3243G点突变情况,并分析该基因位点突变率与起病年龄、血乳酸水平的相关性。采用SPSS 16.0统计软件进行数据处理,所得计量数据以x±s表示,相关性分析采用Pearson积矩相关系数法,以P < 0.05为差异有统计学意义。

2 结果 2.1 临床特点

本文7例病儿起病年龄为3~10岁,平均(7.42±2.57)岁。7例中6例以抽搐为首发症状,1例以头痛、呕吐起病;伴体型瘦小者7例,多毛6例,发热4例,视力障碍3例,肌病表现2例,智力运动发育落后1例,房间隔缺损1例。误诊为癫痫3例,病毒性脑炎2例。1例在随访过程中死亡。

2.2 实验室检查

本文7例病儿血乳酸水平均升高,平均为(7.87±2.48)mmol/L(正常参考值为0.5~2.0 mmol/L)。7例病儿颅脑MRI示顶、枕、颞叶异常信号,不符合解剖学血管支配分布,见图 1。脑电图特点:7例病儿均有背景活动慢化,1例局灶性发作起始部位与颅脑影像学病变部位一致。

A:首诊时MRI平扫示右侧枕叶沿脑回走行异常信号,DWI表现较其他序列明显,呈稍高信号,T1WI呈稍低信号,T2WI及T2压水序列呈稍高信号。B:2011年5月5日(8个月后)检查,右侧顶叶主要在中央后回出现新病灶,原右枕叶病灶区呈萎缩性改变,局部见胶质增生。C:2011年7月7日检查,左侧颞、顶、枕叶出现大片状病灶,以皮质及皮质下白质受累为主,三角区白质相对保持完好,脑回肿胀,DWI呈高信号,ADC图呈高信号,提示为血管源性水肿。D:2012年10月13日检查示右顶叶新发病灶,DWI呈稍高信号,病变区脑回肿胀,脑沟变窄;原左侧颞、顶、枕叶病变区呈脑萎缩性改变,局部脑沟增宽,但脑实质信号改变不明显。 图 1 1例病儿不同时期MRI特点
2.3 基因检测

本文7例病儿的致病基因均为MT-TL1基因A3243G突变,其突变率为(43±14)%;7例病儿母亲及1例病儿姐姐无临床表现,其突变率为10%~20%;病儿父亲均未发现突变。其中2例病儿为双胞胎兄弟,先证者发病后即刻对其胞弟进行基因检测,结果显示A3243G突变率>30%,其弟1年后发病;1例病儿及其母亲、姐姐线粒体MLPA还同时检测到MTND2杂合缺失变异。见图 2

图 2 1例病儿及其母亲、姐姐基因检测结果
2.4 基因突变率与起病年龄、血乳酸水平相关性

MELAS病儿线粒体基因A3243G突变率与血乳酸水平呈正相关(r=0.89,P < 0.01),与起病年龄呈负相关(r=-0.84, P < 0.05)。

3 讨论

人类线粒体DNA是由16 569个碱基对组成的双链环状分子,含37个基因,主要编码呼吸链和与能量代谢有关的蛋白,其结构和功能异常往往导致整个能量代谢过程紊乱,从而产生一系列的疾病。线粒体脑肌病是一组少见的线粒体结构和(或)功能异常所导致的以脑和肌肉受累为主的多系统疾病。MELAS是线粒体脑肌病最常见的一种类型,具有高度临床变异性和遗传异质性,是一种以卒中样发作和乳酸酸中毒为特征的母系遗传病。MELAS发病年龄为3~40岁,以5~15岁起病最为常见。本组病儿起病年龄3~10岁, 平均7.7岁。MELAS临床可表现为卒中样发作[3]、疲乏无力、身材矮小、多毛、头痛和呕吐、视觉障碍、偏瘫、失语、癫痫、心律失常、胃肠功能紊乱、肾脏损害、精神行为异常、内分泌障碍、认知障碍等[4-12],重症可致死亡[13-15],临床表现复杂多样,所以误诊率极高。本组7例病儿中6例以抽搐为首发症状,1例以头痛、呕吐起病;伴体型瘦小7例,多毛6例,发热4例,视力障碍3例,肌病表现2例,智力运动发育落后1例,房间隔缺损1例。由于临床表现复杂,本组误诊5例,其中误诊为癫痫3例,误诊为病毒性脑炎2例。本组57%的病儿出现发热,发热是误诊为病毒性脑炎的原因之一。发热时代谢增高,ATP消耗增多,加重了线粒体的负担,加之氧化应激产生过多的氧自由基,可导致线粒体衰竭而死亡,从而出现一系列的临床症状。因此,感染发热是MELAS的一个重要诱因。尤其需要注意的是,本组以抽搐为首发症状者比例明显高于以往文献报道[7]。反复出现的抽搐发作且发作间期未见脑电图的异常,则使MELAS易被误诊为特发性癫痫。

MELAS的脑内病灶可单发或散在多发,多呈不对称分布,双侧脑叶发病概率基本相同,本组病例发病区域主要位于顶、枕叶,其次为颞叶。MELAS可反复发作,本组同一病儿的多次MRI检查可见病灶具有游走性、多变性,这是其有别于其他疾病的另一重要影像学特点[16-18]。综合该病儿多次MRI检查来看,MELAS脑MRI表现具有一定的特点:①病灶脑回状分布,以累及皮质及皮质下白质为主,当然也有只累及深部灰质核团的报道,但本组病例未见;②病灶不按脑血管支配区分布,以累及颞、顶、枕叶为主,额叶少见;③病灶具有游走性,此起彼伏,反复发作,最终趋向于文献所报道的对称性分布(这种对称不是一次形成的);④血管源性水肿为主,DWI表现为高信号,ADC图呈高信号,可与脑梗死鉴别。功能MRI对MELAS鉴别至关重要。本组7例脑电图检查示发作间期均以背景活动慢化为主,未见痫样放电,1例部分性发作起始部位与颅脑影像学病变部位有高度相关性,基因检查示mtDNA3243位点突变,符合文献报道的MELAS表现。

基因突变分析是确诊MELAS的重要手段之一。MELAS以mtDNA突变为主,其突变位点很多,可位于tRNA、COXⅢND3和ND5[19-21]。其中发现最早、最常见突变是编码tRNA的mtDNA A3243G突变[13],占80%左右。本组7例病儿经基因突变分析证实均为mtDNA A3243G突变,此突变是我国儿童MELAS最常见的突变。而1例病儿及其母亲、姐姐在检测到mtDNA A3243G突变的同时还于MLPA检测到MTND2杂合缺失突变,此变异尚未见到文献报道与MELAS相关。ND2基因是线粒体DNA中的一个蛋白编码基因,其编码蛋白是构成线粒体呼吸链复合物中的重要亚单位之一,并且参与线粒体呼吸链和氧化磷酸化功能。此例病儿临床症状重、起病年龄早不能确定是否与合并ND2杂合缺失突变有关。线粒体脑肌病是母系遗传病,子代遗传的突变mtDNA占总mtDNA的比例较其上一代有所增加,异质性和阈效应导致同一母亲的不同子女临床表型亦有很多的不同。只有当突变的DNA占一定比例时才会引起临床症状,这个比例被称为阈值,而这种现象则被称为阈效应。突变的异质性及器官对突变敏感性程度的不同,可导致不同缺陷的临床症状[22]。同时,A3243G突变存在很大的临床异质性,使得携带同一个突变的个体呈现不同类型、不同程度的临床表型,有些表型甚至终身不发病。血清与脑脊液乳酸水平升高是诊断MELAS重要的生化指标[23],乳酸水平与神经损伤的严重程度相关。本组7例病儿血乳酸水平均大于5 mmol/L,其中病情较重的1例病儿血乳酸水平最高。本文结果显示,MELAS病儿A3243G突变率与血乳酸水平呈正相关,与起病年龄呈负相关,表明MELAS病儿A3243G突变率高低可提示临床症状轻重程度。目前确诊MELAS的金标准是在病理、基因和生化检查中发现线粒体有结构和功能异常,单纯测定乳酸缺乏特异性。影像学检查虽然有特征性表现,但其出现较晚。骨骼肌活检因其有创性、局限性,症状较轻的病人多不能配合。随着二代基因测序技术的蓬勃发展,基因测序速度极大提升、成本大幅下降,为MELAS早期诊断开辟了新的途径。

本病目前尚无特殊治疗方法,除传统的“鸡尾酒”疗法外,有研究表明,天然奎宁化合物β-拉帕醌可减轻线粒体功能障碍[24];另有报道可通过诱导多能干细胞进行自体细胞替代治疗[25];还有报道生酮饮食可通过改善线粒体功能而控制抽搐及卒中样发作[26];也有学者认为,通过对瓜氨酸及精氨酸的补充从而增加一氧化氮的生成,减轻脑血流灌注受损,对MELAS可能起到治疗作用[27]。但最终疗效目前尚无大样本临床报道。由此看来,遗传性筛查尤为重要,对病人及其家庭成员进行婚姻及生育方面指导,能防患于未然。同时本病需做好家系调查,筛查基因携带者,并进行必要的遗传学指导。

综上所述,儿童MELAS临床表现复杂多样,首发症状不一,早期诊断困难,需注意与病毒性脑炎、脑血管病等相鉴别。身材矮小、多毛为其常见体征,对于合并多种不相关的器官受累者要高度警惕该病,当临床遇有表型典型和(或)具有特征性影像学改变者应想到MELAS,可行血乳酸、脑电图检查进行初筛,可疑者进一步行基因突变检测。充分认识MELAS的临床、生化、颅脑影像、病理、基因突变及预后特点,将有助于其早期诊断与治疗,并有助于遗传咨询。早期筛查家系以及进行基因检测有助于MELAS的诊断,病儿线粒体基因A3243G突变率的高低可能为该病临床严重程度及预后评估提供依据,但这仍需大样本研究进一步证实。

参考文献
[1]
LIN D S, HUANG Y W, HO C S, et al. Oxidative insults and mitochondrial DNA mutation promote enhanced autophagy and mitophagy compromising cell viability in pluripotent cell model of mitochondrial disease[J]. Cells, 2019, 8(1): 65.
[2]
SUN Xiangrong, JIANG Guohui, JU Xinyue, et al. MELAS and macroangiopathy: a case report and literature review[J]. Medicine, 2018, 97(52): e13866. DOI:10.1097/MD.0000000000013866
[3]
FRYER R H, BAIN J M, DE VIVO D C. Mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS): a case report and critical reappraisal of treatment options[J]. Pediatric Neurology, 2016, 56: 59-61. DOI:10.1016/j.pediatrneurol.2015.12.010
[4]
LEE S, OH D A, BAE E K. Fixation-off sensitivity in mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome[J]. Seizure, 2019, 64: 6-7. DOI:10.1016/j.seizure.2018.11.010
[5]
THOMAS T, CRAIGEN W J, MOORE R, et al. Arrhythmia as a cardiac manifestation in MELAS syndrome[J]. Mol Genet Metab Rep, 2015, 4: 9-10. DOI:10.1016/j.ymgmr.2015.05.002
[6]
GE Yuxing, SHANG Bo, CHEN Wenzhen, et al. Adult-onset of mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome with hypothyroidism and psychiatric disorders[J]. eNeurologicalSci, 2016, 6: 16-20.
[7]
EL-HATTAB A W, ADESINA A M, JONES J A. MELAS syndrome:clinical manifestations, pathogenesis, and treatment options[J]. Molecular Genetics and Metabolism, 2015, 116(1/2, SI): 4-12.
[8]
FINSTERER J, ZARROUK-MAHJOUB S. Gastrointestinal involvement in m.3243A > G-associated MELAS[J]. Internal Medicine, 2018, 57(5): 769-770. DOI:10.2169/internalmedicine.9439-17
[9]
SUZUKI J, IWATA M, MORIYOSHI H, et al. Gastro-intestinal involvement in m. m.3243A > G-associated mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes[J]. Internal Medicine, 2018, 57(5): 771. DOI:10.2169/internalmedicine.9632-17
[10]
KRAYA T, DESCHAUER M, JOSHI P R, et al. Prevalence of headache in patients with mitochondrial disease: a cross-sectional study[J]. Headache, 2018, 58(1): 45-52. DOI:10.1111/head.13219
[11]
VOLLONO C, PRIMIANO G, DELLA MARCA G A, et al. Migraine in mitochondrial disorders:prevalence and characte-ristics[J]. Cephalalgia: an International Journal of Headache, 2018, 38(6): 1093-1106. DOI:10.1177/0333102417723568
[12]
FINSTERER J, FRANK M. Renal involvement in MELAS[J]. Medicina Clinica, 2017, 149(7): 314-321. DOI:10.1016/j.medcli.2017.03.053
[13]
LANGDAHL J H, LARSEN M, FROST M, et al. Lecocytes mutation load declines with age in carriers of the m.3243A > G mutation: a 10-year prospective cohort[J]. Clinical Genetics, 2018, 93(4): 925-928. DOI:10.1111/cge.13201
[14]
KONDO H, FUJITA Y, MIZUNO Y, et al. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes with severe systemic symptoms:pathology and biochemistry[J]. Pediatrics International, 2018, 60(3): 300-302. DOI:10.1111/ped.13472
[15]
ZHANG Zhe, ZHAO Danhua, ZHANG Xiao, et al. Survival analysis of a cohort of Chinese patients with mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) based on clinical features[J]. Journal of the Neurological Sciences, 2018, 385: 151-155. DOI:10.1016/j.jns.2017.12.033
[16]
BINDU P S, SONAM K, GOVINDARAJ P, et al. Outcome of epilepsy in patients with mitochondrial disorders:phenotype genotype and magnetic resonance imaging correlations[J]. Clinical Neurology and Neurosurgery, 2018, 164: 182-189. DOI:10.1016/j.clineuro.2017.12.010
[17]
HENRY C, PATEL N, SHAFFER W, et al. Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes-MELAS syndrome[J]. The Ochsner Journal, 2017, 17(3): 296-301.
[18]
WHITEHEAD M T, WIEN M, LEE B, et al. Black toenail sign in MELAS syndrome[J]. Pediatric Neurology, 2017, 75: 61-65. DOI:10.1016/j.pediatrneurol.2017.06.017
[19]
LIM B C, PARK J D, HWANG H, et al. Mutations in ND subunits of complex Ⅰ are an important genetic cause of childhood mitochondrial encephalopathies[J]. Journal of Child Neurology, 2009, 24(7): 828-832. DOI:10.1177/0883073808331085
[20]
MUKAI M, NAGATA E. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) due to a m.10158T > C ND3 mutation with a normal muscle biopsy[J]. Internal Medicine, 2017, 56(19): 2695. DOI:10.2169/internalmedicine.8962-17
[21]
TOYOSHIMA Y, TANAKA Y, YASUDA S, et al. MELAS syndrome associated with a new mitochondrial tRNA-Val gene mutation (m.1616A > G)[J]. Annals of Neurology, 2017, 76(18, SI): S67-S68. DOI:10.1136/bcr-2017-220934
[22]
MESEGUER S, PANADERO J, NAVARRO-GONZALEZ C, et al. The MELAS mutation m.3243A > G promotes reactivation of fetal cardiac genes and an epithelial-mesenchymal transition-like program via dysregulation of miRNAs[J]. Biochimica et Biophysica Acta-Molecular Basis of Disease, 2018, 1864(9, B): 3022-3037. DOI:10.1016/j.bbadis.2018.06.014
[23]
GOODFELLOW J A, DANI K, STEWART W, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes: an important cause of stroke in young people[J]. Postgraduate Medical Journal, 2012, 88(140): 326-334.
[24]
JEONG M H, KIM J H, SEO K S, et al. β-Lapachone at te-nuates mitochondrial dysfunction in MELAS cybrid cells[J]. Biochemical and Biophysical Research Communications, 2014, 454(3): 417-422. DOI:10.1016/j.bbrc.2014.10.093
[25]
KODAIRA M, HATAKEYAMA H, YUASA S, et al. Impaired respiratory function in MELAS-induced pluripotent stem cells with high heteroplasmy levels[J]. FEBS Open Bio, 2015, 5: 219-225. DOI:10.1016/j.fob.2015.03.008
[26]
STERIADE C, ANDRADE D M, FAGHFOURY H A, et al. Mitochondrial encephalopathy with lactic acidosis and stroke-like episodes (MELAS) may respond to adjunctive ketogenic diet[J]. Pediatric Neurology, 2014, 50(5): 498-502. DOI:10.1016/j.pediatrneurol.2014.01.009
[27]
EL-HATTAB AW, ALMANNAI M, SCAGLIA F. Arginine and citrulline for the treatment of MELAS syndrome[J]. J Inborn Errors Metab Screen, 2017, 5: 1-5.