2. 青岛市市立医院东院区肿瘤科
幽门螺杆菌感染是胃癌的主要致病危险因素之一,其可通过慢性萎缩性胃炎导致胃癌的发生[1]。但其他感染因子也可能参与胃癌的发生发展,如EB病毒(EBV)感染与部分胃癌发病的关系已被确认,EBV相关胃癌(EBVaGC)占胃癌总数的10%左右,可发生于所有组织学类型的胃癌[2-4]。微管相关蛋白(MAPs)家族可以调节微管的稳定性,MAPs通过调节微管与肌动蛋白的直接交联参与细胞的增殖过程,进而可能会对肿瘤的发生、发展与存活有影响[5-8]。研究表明,MAP9是与中心点及纺锤体相关的蛋白,其异常表达可导致有丝分裂缺陷,促进细胞癌变[9-11]。单核苷酸多态性(SNP)是人类基因组序列变异的主要形式,是致癌发生早期的关键致病因子,已被广泛用作诊断和评估某些疾病和癌症的风险及预后的生物标记物[12-14]。此前,有关EBVaGC基因多态性的研究尽管众多[15-16],但目前尚未见有关MAP9基因SNP的报道。本文对EBVaGC、鼻咽癌(NPC)与淋巴瘤组织中MAP9基因高突变位点rs1058992多态性进行检测分析,并探讨EBV对MAP9基因的影响。
1 资料与方法 1.1 研究对象选择青岛大学附属医院与青岛市市立医院病理科收集的胃癌、NPC及淋巴瘤组织标本,其中胃癌新鲜组织标本与石蜡包埋组织标本152例,病人男119例,女33例,平均年龄(57.31±11.49)岁;NPC新鲜组织标本与石蜡包埋组织标本98例,男67例,女31例,平均年龄(47.94±14.21)岁;淋巴瘤石蜡包埋组织标本128例,男78例,女50例,平均年龄(47.75±19.69)岁。所有标本均经病理学检查确诊。同时,取100例健康人外周血5 mL为正常对照组,采用EDTA抗凝,经离心分离单核细胞群用于提取DNA。
1.2 EBV感染鉴定采用原位杂交技术检测石蜡包埋组织标本中EBV编码小RNA1(EBER1),EBER1特异性寡核苷酸反义探针(AGACACCGTCCTCACCACCCG-GGACTTGTA)[17]采用Roche公司的Dig Oligonucleotide 3′-end Labeling kit标记。EBER1阳性者确定为EBV阳性标本[18]。
1.3 DNA提取采用蛋白酶K消化和酚-氯仿法提取外周血与新鲜组织标本DNA,石蜡包埋组织DNA抽提试剂盒(QIAGEN,德国)提取石蜡包埋组织中的DNA。采用NanoPhotometer P360 (IMPLEN, 德国)检测样本DNA浓度和纯度,所有样品DNA浓度需介于0.05~0.50 g/L之间。
1.4 基因多态性检测所有DNA样本均直接送华大基因公司,采用时间飞行质谱技术检测MAP9基因rs1058992位点的基因型。
1.5 统计学分析应用SPSS 17.0软件进行统计学分析,数据间比较采用卡方检验与Fisher精确检验(双向)分析,以P < 0.05为差异有统计学意义。用无条件Logistic回归比较值(OR)和95%置信区间(CI)表示相关组间的相关性。
2 结果 2.1 各组标本EBV感染情况EBER1原位杂交筛选出58例EBVaGC、88例EBV阳性NPC和86例EBV阳性淋巴瘤。
2.2 EBVaGC中MAP9基因rs1058992位点基因型分析胃癌与正常对照组3种基因型TT、CT、CC分布及等位基因T和C频率见表 1。EBVaGC组与EBV阴性胃癌(EBVnGC)组比较,TT、CT、CC基因型分布差异有统计学意义(χ2=7.687,P < 0.05)。针对等位基因C分别建立显性模型与隐性模型,在隐性模型中,EBVaGC组的CC基因型频率明显高于EBVnGC组(χ2=7.654,P < 0.01,OR=2.558,95%CI=1.306~5.010);而显性模型,与EBVnGC组比较,EBVaGC组CC+TC基因型无明显增加。与EBVnGC组比较,EBVaGC组C等位基因频率明显升高,T等位基因频率明显降低(χ2=6.154,P < 0.05,OR=1.904,95%CI=1.141~3.179)。EBVaGC组与正常对照组比较,3种基因型分布无明显差异(P>0.05);针对等位基因C建立的显性模型与隐性模型的统计学分析结果表明两组间也无显著差异(P>0.05);而EBVaGC组C等位基因频率明显高于正常对照组,T等位基因则明显低于正常对照组(χ2=4.442,P < 0.05,OR=1.724,95% CI=1.036~ 2.870)。EBVnGC与正常对照组比较,3种基因型分布、等位基因C的显性模型与隐性模型以及C与T的等位基因频率比较,差异均无显著性(P>0.05)。正常对照组3种基因型分布符合遗传平衡定律。
表 1 胃癌与正常对照组MAP9基因型与等位基因的多态性分布情况 |
![]() |
NPC组与正常对照组3种基因型(TT、CT、CC)分布与等位基因T和C频率见表 2。EBV阳性NPC组与EBV阴性NPC组比较,3种基因型分布差异无显著性(χ2=0.132,P>0.05)。针对等位基因C建立显性模型与隐性模型,在隐性模型中,EBV阳性NPC组的CC基因型频率与EBV阴性NPC组比较差异无显著性(P=0.750,OR=0.796,95%CI=0.215~2.947);在显性模型中,与EBV阴性NPC组比较,EBV阳性NPC组CC+TC基因型没有明显增加(P=1.000,OR=0.778,95%CI=0.090~6.747)。与EBV阴性NPC组相比较,EBV阳性NPC组C等位基因与T等位基因频率均未见明显变化(χ2=0.135,P>0.05,OR=0.829,95% CI=0.303~2.266)。
表 2 NPC与正常对照组MAP9基因型与等位基因的多态性分布情况 |
![]() |
EBV阳性NPC组与正常对照组比较,3种基因型分布无明显差异(χ2=0.235,P>0.05);针对等位基因C建立的显性模型与隐性模型,统计学分析结果表明两组间差异也无显著意义(P>0.05);而EBV阳性NPC组C等位基因频率与正常对照组无明显差异(χ2=0.238,P>0.05,OR=1.111,95%CI=0.727~1.699)。EBV阴性NPC组与正常对照组相比较,3种基因型分布、等位基因C的显性模型与隐性模型以及C与T的等位基因频率差异均无显著性(P>0.05)。
2.4 EBV相关淋巴瘤中MAP9基因rs1058992位点基因型分析淋巴瘤与正常对照组中3种基因型TT、CT、CC分布与等位基因T和C频率见表 3。EBV阳性淋巴瘤组与EBV阴性淋巴瘤组比较,3种基因型分布差异无显著性(χ2=1.272,P>0.05)。针对等位基因C建立显性模型与隐性模型,在隐性模型中,EBV阳性淋巴瘤组CC基因型频率与EBV阴性淋巴瘤组比较差异无显著性(χ2=1.261,P>0.05,OR= 0.654,95%CI=0.311~1.375);而在显性模型,与EBV阴性淋巴瘤组比较,EBV阳性淋巴瘤组CC+TC基因型无明显增加(χ2=0.241,P>0.05,OR=0.759,95%CI=0.251~2.290)。与EBV阴性淋巴瘤组比较,EBV阳性淋巴瘤组C等位基因与T等位基因频率均未见明显变化(χ2=1.152,P>0.05,OR=0.738,95%CI=0.423~1.287)。
表 3 淋巴瘤与正常对照中MAP9基因型与等位基因分布情况 |
![]() |
EBV阳性淋巴瘤组与正常对照组比较,3种基因型分布差异无显著性(χ2=0.066,P>0.05);针对等位基因C建立显性模型与隐性模型,统计学分析结果表明两组间差异也无显著意义(P>0.05);而EBV阳性淋巴瘤组C等位基因频率与正常对照组比较差异无显著意义(χ2=0.066,P>0.05,OR=0.946,95%CI=0.621~1.443)。EBV阴性淋巴瘤组与正常对照组相比较,3种基因型分布、等位基因C的显性模型与隐性模型以及C与T等位基因频率差异均无显著性(P>0.05)。
3 讨论MAP9属MAP家族,MAPs可调节微管性质和功能,其表达或翻译修饰的改变可能会导致微管动力学失调,从而导致细胞有丝分裂失常,与包括癌症在内的多种疾病的发生发展密切相关[19]。有研究表明,与相应癌旁组织相比较,结直肠癌组织中MAP9表达下调[20]。在DNA损伤应答中,MAP9通过其N端部分与p53直接作用,有助于p53的稳定性,并促进p53依赖的转录,进而影响肿瘤的发生[21]。有关MAP9基因的SNP则少有研究报道。rs1058992位点位于MAP9基因的第11个外显子,核苷酸由T突变为C,其突变属于错义突变,编码的氨基酸由赖氨酸突变为精氨酸,由此引起的编码蛋白结构与功能的改变有待进一步研究。本研究对MAP9基因多态性与EBV相关肿瘤(NPC、淋巴瘤及胃癌)易感性的关系进行了分析,研究结果显示,EBVaGC组与EBVnGC组间rs1058992位点基因型分布与等位基因差异有显著意义,EBVaGC组突变基因型CC以及等位基因C频率明显升高,基因型TT、CT与等位基因T频率则相应的降低,提示CC基因型及等位基因C是EBVaGC的危险因素;EBVaGC组较正常对照组C等位基因频率明显增加,T等位基因降低,而EBVnGC组中该位点基因型分布与等位基因频率与正常对照组比较无明显差异,提示胃癌EBV易感性与此位点突变密切相关。在鼻咽癌与淋巴瘤中,EBV阳性肿瘤组与正常对照组、EBV阴性肿瘤组间基因型分布与等位基因频率差异无显著性,提示在这两种肿瘤中EBV的易感性与rs1058992位点的突变无明显相关性,而导致这种差异的主要原因很可能在于EBV的潜伏机制不同。众所周知,EBVaGC中EBV为Ⅰ型潜伏,与其他EBV相关肿瘤如NPC、Burkitt’s淋巴瘤等组织中病毒编码基因的表达不完全相同[22-24]。如公认的EBV细胞转化基因,即潜伏膜蛋白1(LMP1)编码基因在EBVaGC组织不表达,其主要表达EBV核抗原(EBNA)和EBER,另有部分病人可以表达LMP2A[25-28],推测EBV相关肿瘤组织中MAP9基因rs1058992位点多态性与EBV编码蛋白不同有关。此外,本实验室的前期研究表明,在EBVaGC细胞系中MAP9处于高表达状态,而在EBVnGC细胞系中低表达,而MAP9基因rs1058992位点多态性是否与其表达相关,还需进一步的研究证明。
综上所述,MAP9基因rs1058992位点CC突变基因型和C等位基因均与EBVaGC易感性有关,C等位基因可能是EBVaGC的危险因素,MAP9基因rs1058992位点多态性可作为EBVaGC的肿瘤标志物。
[1] |
CORREA P. A human emodl of gastric carcinogenesis[J]. Cancer Research, 1988, 48(13): 3554-3560. |
[2] |
WILLIAMS H, CRAWFORD D H. Epstein-Barr virus:the impact of scientific advances on clinical practice[J]. Blood, 2006, 107(3): 862-869. |
[3] |
TOKUNAGA M, LAND C E, UEMURA Y, et al. Epstein-Barr virus in gastric carcinoma[J]. American Journal of Pathology, 1993, 143(5): 1250-1254. |
[4] |
OSATO T, IMAI S. Epstein-Barr virus and gastric carcinoma[J]. Seminars in Cancer Biology, 1996, 7(4): 175-182. DOI:10.1006/scbi.1996.0024 |
[5] |
MOHAN R, JOHN A. Microtubule-associated proteins as direct crosslinkers of actin filaments and microtubules[J]. IUBMB Life, 2015, 67(6): 395-403. DOI:10.1002/iub.1384 |
[6] |
RAMKUMAR A, JONG B Y, ORI-MCKENNEY K M. ReMAPping the microtubule landscape:how phosphorylation dictates the activities of microtubule-associated proteins[J]. Developmental Dynamics, 2018, 247(1, SI): 138-155. |
[7] |
TOKURAKU K, KATSUKI M, MATUI T, et al. Microtubule-binding property of microtubule-associated protein 2 differs from that of microtubule-associated protein 4 and tau[J]. European Journal of Biochemistry, 1999, 264(3): 996-1001. DOI:10.1046/j.1432-1327.1999.00710.x |
[8] |
冯佳韵.微管相关蛋白2预测恶性黑素瘤侵袭性的临床研究[D].大连: 大连医科大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10161-1015625295.htm
|
[9] |
SAFFIN J M, VENOUX M, PRIGENT C, et al. ASAP, a human microtubule-associated protein required for bipolar spindle assembly and cytokinesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(32): 11302-11307. DOI:10.1073/pnas.0500964102 |
[10] |
VENOUX M, BASBOUS J, BERTHENET C, et al. ASAP is a novel substrate of the oncogenic mitotic kinase Aurora-A:phosphorylation on Ser625 is essential to spindle formation and mitosis[J]. Human Molecular Genetics, 2008, 17(2): 215-224. DOI:10.1093/hmg/ddm298 |
[11] |
EOT-HOULLIER G, VENOUX M, VIDAL-EYCHENIE S A, et al. Plk1 regulates both ASAP localization and its role in spindle Pole integrity[J]. Journal of Biological Chemistry, 2010, 285(38): 29556-29568. DOI:10.1074/jbc.M110.144220 |
[12] |
BROOKES A J. The essence of SNPs[J]. Gene, 1999, 234(2): 177-186. DOI:10.1016/S0378-1119(99)00219-X |
[13] |
WANG Fang, SUN Guoping, ZOU Yanfeng, et al. Quantitative assessment of the association between miR-196a2 rs11614913 polymorphism and gastrointestinal cancer risk[J]. Molecular Biology Reports, 2013, 40(1): 109-116. DOI:10.1007/s11033-012-2039-4 |
[14] |
GONZALEZ-HORMAZABAL P, ROMERO S, MUSLEH M A, et al. IL-8-251T> A (rs4073) polymorphism is associated with prognosis in gastric cancer patients[J]. Anticancer Research, 2018, 38(10): 5703-5708. DOI:10.21873/anticanres.12907 |
[15] |
LIU Ying, YANG Wenjun, PAN Yaqi, et al. Genome-wide analysis of Epstein-Barr virus (EBV) isolated from EBV-asso-ciated gastric carcinoma (EBVaGC)[J]. Oncotarget, 2016, 7(4): 4903-4914. |
[16] |
SONG Y, LIU S, ZHAO Z, et al. Relationship between PPP1R15A gene polymorphism (rs611251) and Epstein-Barr virus-associated tumors[J]. Acta Virologica, 2017, 61(4): 445-452. DOI:10.4149/av_2017_407 |
[17] |
LOPES L F, BACCHI M M, ELGUI-DE-OLIVEIRA D, et al. Epstein-Barr virus infection and gastric carcinoma in Sao Paulo State, Brazil[J]. Brazilian Journal of Medical and Biolo-gical Research, 2004, 37(11): 1707-1712. DOI:10.1590/S0100-879X2004001100016 |
[18] |
TOKUNAGA M, LAND C E, UEMURA Y, et al. Epstein-Barr virus in gastric carcinoma[J]. The American Journal of Pathology, 1993, 143(5): 1250-1254. |
[19] |
冯思坛, 施鑫. 微管相关蛋白与肿瘤关系的研究进展[J]. 医学研究生学报, 2013, 26(8): 878-881. DOI:10.3969/j.issn.1008-8199.2013.08.027 |
[20] |
ROUQUIER S, PILLAIRE M J, CAZAUX C A. Expression of the microtubule-associated protein MAP9/ASAP and its partners AURKA and PLK1 in colorectal and breast cancers[J]. Disease Markers, 2014, 2014: 798170. DOI:10.1155/2014/798170 |
[21] |
BASBOUS J, KNANI D, BONNEAUD N, et al. Induction of ASAP (MAP9) contributes to p53 stabilization in response to DNA damage[J]. Cell Cycle, 2012, 11(12): 2380-2390. DOI:10.4161/cc.20858 |
[22] |
KANAKRY J A, AMBINDER R F. EBV-related lymphomas:new approaches to treatment[J]. Current Treatment Options in Oncology, 2013, 14(2): 224-236. DOI:10.1007/s11864-013-0231-y |
[23] |
YOUNG L S, DAWSON C W, CLARK D, et al. Epstein-Barr virus gene expression in nasopharyngeal carcinoma[J]. Journal of General Virology, 1988, 69(5): 1051-1065. DOI:10.1099/0022-1317-69-5-1051 |
[24] |
GONG L P, CHEN J N, XIAO L, et al. The implication of tumor infiltrating lymphocytes in Epstein-Barr virus-associated gastric carcinoma[J]. Human Pathology, 2018, 15: S0046-8177(18)30426-X. |
[25] |
VRZALIKOVA K, IBRAHIM M, NAGY E, et al. Co-expression of the Epstein-Barr virus-encoded latent membrane proteins and the pathogenesis of classic hodgkin lymphoma[J]. Cancers, 2018, 10(9): E285. DOI:10.3390/cancers10090285 |
[26] |
LO A K, LUNG R W, DAWSON C W, et al. Activation of sterol regulatory element-binding protein 1 (SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma[J]. Journal of Pathology, 2018, 246(2): 180-190. DOI:10.1002/path.5130 |
[27] |
TSAO S W, TSANG C M, PANG P S, et al. The biology of EBV infection in human epithelial cells[J]. Seminars in Cancer Biology, 2012, 22(2): 137-143. DOI:10.1016/j.semcancer.2012.02.004 |
[28] |
CHEN X Z, CHEN H D, CASTRO F A, et al. Epstein-Barr virus infection and gastric cancer:a systematic review[J]. Medicine, 2015, 94(20): e792. DOI:10.1097/MD.0000000000000792 |