星形胶质细胞是中枢神经系统中数量最多、分布最广、体积最大的胶质细胞[1],在维持中枢神经系统内环境稳态、支持营养神经元、参与免疫应答等方面起着重要作用[2]。星形胶质细胞适度激活后可释放多种神经营养因子,发挥神经元保护作用[3]。但过度激活的星形胶质细胞会释放大量的神经炎性因子如白细胞介素-1β(IL-1β)、白细胞介素-6(IL-6)、环氧化酶-2(COX-2)、肿瘤坏死因子-α(TNF-a)和一氧化氮(NO)等[4-5],引起神经系统炎性病变、突触功能障碍及神经元死亡,进而引发相关的神经系统疾病如帕金森病、阿尔茨海默病[6]。因此,抑制活化星形胶质细胞炎性因子的过度释放,找到对抗炎症反应的潜在靶标,对于神经系统退行性疾病的治疗具有重要意义。近年来中药治疗神经炎症反应的研究取得了一定的进展,淫羊藿素(ICT)作为传统补益中药淫羊藿苷的水解衍生物,能够发挥雌激素样的神经保护和抗炎作用[7]。已有研究证实,在体外细胞水平ICT具有抗炎作用,能够抑制脂多糖(LPS)诱导的小鼠RAW264.7巨噬细胞产生TNF-α、IL-1β、NO和前列腺素E2(PGE2);在整体动物水平,ICT能够降低LPS诱导的C57BL/6J小鼠炎症模型血清中TNF-α和PGE2的水平及嗜中性粒细胞CD11b的表达[8-9]。此外,ICT能够通过雌激素依赖的信号途径对抗β淀粉样蛋白诱导的原代大鼠神经元毒性反应[10]。那么,ICT能否通过雌激素受体(ER)抑制星形胶质细胞的炎症反应,目前尚不清楚。本研究应用LPS制备原代星形胶质细胞的炎症模型,观察ICT对LPS诱导的COX-2和诱导型一氧化氮合酶(iNOS)基因表达的影响以及ER特异性阻断剂的阻断效应,以期为中枢神经系统炎症相关疾病的治疗提供新靶点。
1 材料与方法 1.1 材料及其来源ICT购于上海同田生物公司;DMEM/F12培养基购自美国Hyclone公司;LPS和ICI182, 780由美国Sigma公司提供;TRIzol购自美国Life Technologies公司;PCR逆转录试剂盒购自Roche公司;SYBR Green购自美国Takara公司;新生SD大鼠购自济南朋悦实验动物繁育有限公司。
1.2 细胞培养及分组显微镜下分离新生SD大鼠中脑,将其置于含有高糖培养基的培养皿中,去除脑膜和血管,分别用1 000、200、10 μL枪头轻轻吹打,使脑组织呈离散状态,收集细胞悬液至大离心管中,离心,弃上清,加入含体积分数0.10胎牛血清、100 kU/L青霉素和100 mg/L链霉素的DMEM高糖培养液,将细胞接种到培养瓶中,于37 ℃、含体积分数0.05的CO2培养箱中差速黏附处理30 min,更换新培养瓶继续培养7~10 d,待细胞长满瓶底时,置于37 ℃摇床中以210 r/min振荡16~18 h,更换新鲜培养液,用胰酶消化法收集细胞进行实验。将原代培养的星形胶质细胞分为对照组(A组)、LPS组(B组)、ICT+LPS组(C组)、ICI182, 780+ICT+LPS组(D组)以及ICI182, 780组(E组)。对照组给予1 g/L的二甲基亚砜处理;LPS组加入1 mg/L的LPS作用6 h;ICT+LPS组在加LPS前先用10 μmol/L的ICT预保护1 h;ICI182, 780组和ICI182, 780+ICT+LPS组均加入1 μmol/L的ICI182, 780作用细胞1 h,然后ICI182, 780+ICT+LPS组加入ICT预保护1 h,再加入LPS作用6 h。
1.3 实时荧光定量PCR(RT-PCR)检测COX-2和iNOS mRNA水平采用Trizol法提取总RNA,取2 μg总RNA加入1 μL锚定的寡聚(dT)18引物和DEPC水,使总体积达到13 μL,55 ℃变性10 min;加入7 μL的反应体系(内含逆转录酶RT 0.5 μL、RNase抑制剂0.5 μL、缓冲液4.0 μL、dNTP 2.0 μL),55 ℃作用30 min,继以85 ℃作用5 min逆转录合成cDNA。采用SYBR Green染料法定量检测COX-2、iNOS和GAPDH的基因表达[11]。大鼠原代星形胶质细胞扩增引物及其序列见表 1。采用2-△△CT法计算基因相对表达量。
表 1 RT-PCR引物种类及其序列 |
![]() |
实验所得计量资料结果以x±s形式表示,应用GraphPad Prism 5.0统计软件进行单因素方差分析(One-Way ANOVA),并继以Tukey法进行两两比较。以P<0.05为差异有显著性。
2 结果与对照组相比,LPS组COX-2和iNOS基因表达明显上调(F=18.19、394.80,q=8.89、41.74,P<0.01);ICT+LPS组COX-2和iNOS基因表达水平较LPS组均明显降低,差异有统计学意义(q=7.44、13.83,P<0.01);而ICT的抗炎作用可以被ICI182, 780所阻断,ICI182, 780+ICT+LPS组COX-2和iNOS基因表达较ICT+LPS组明显升高,差异有统计学意义(q=6.80、8.80,P<0.01);ICI182, 780组二者表达与对照组相比差异无统计学意义(P>0.05)。见表 2。
表 2 各组细胞COX-2和iNOS基因表达比较(n=3,x±s) |
![]() |
研究表明,星形胶质细胞通过合成和分泌多种神经营养因子、趋化因子以及细胞因子,参与神经系统的免疫反应[12]。在脑缺血、损伤或感染等病理情况下,星形胶质细胞被激活,激活后的星形胶质细胞释放大量的炎性因子(如TNF-α、IL-6、NO、PGE2等),这些炎性因子作用于邻近的细胞引起炎症反应,造成神经元损伤[13-14]。因此,有效抑制星形胶质细胞的炎症反应,减少炎性因子的释放,将对中枢神经系统的神经退行性疾病以及炎症相关病变起到有效的治疗作用[15]。
淫羊藿是传统的中药材,具有补肾壮阳、强筋骨等作用[16]。ICT是淫羊藿的主要活性成分淫羊藿苷的衍生物,能发挥类雌激素样的神经保护和抗炎作用[17]。本课题组在前期工作中已经证实,ICT能够对抗MPP+诱导的MES23.5细胞损伤[11]。LPS作为革兰阴性菌细胞壁的组成成分,具有很强的致炎作用,可以与细胞膜上的Toll样受体4(TLR4)结合,通过NF-κB与MAPKs信号通路介导原代星形胶质细胞的炎症反应[18-19]。本实验应用LPS制备原代星形胶质细胞的炎症模型,结果显示,应用1 mg/L的LPS处理原代星形胶质细胞,能够显著提高COX-2和iNOS的基因表达。COX-2在炎症反应中发挥重要作用,是前列腺素合成的关键限速酶,可以催化细胞产生前列腺素,参与炎症反应[20]。iNOS能够催化产生促炎因子NO[4]。近年来,随着分子生物学的发展及雌激素在临床上的广泛应用[21],对ER介导的信号转导途径及其作用的研究日趋活跃[22]。雌激素可通过核受体ERα和ERβ介导的基因组途径,发挥多种生理作用[23]。有研究显示,ICT能够促进乳癌MCF-7细胞增殖,进一步的机制研究揭示ICT对MCF-7、T47D乳癌细胞的促增殖作用与ER有关[24]。在神经系统,ICT能够通过雌激素依赖的信号途径对抗β淀粉样蛋白诱导的原代大鼠神经元的毒性反应[10]。但在原代星形胶质细胞,ICT是否通过ER发挥其抗炎作用,目前尚未见报道。本实验研究结果显示,用10 μmol/L的ICT预保护原代星形胶质细胞,能够明显抑制LPS诱导的COX-2和iNOS基因表达上调,提示ICT对原代星形胶质细胞具有明显的抗炎作用;而进一步的实验结果也显示,应用核受体ER特异性阻断剂ICI182, 780能够阻断ICT的抗炎作用,表明ER参与了ICT的抗炎作用。
综上所述,ICT能够抑制LPS诱导的原代星形胶质细胞COX-2和iNOS基因的表达,其抗炎机制与ER信号途径的激活有关。
[1] |
OKUDA H. A review of functional heterogeneity among astrocytes and the CS56-specific antibody-mediated detection of a subpopulation of astrocytes in adult brains[J]. Anatomical Science International, 2018, 93(2): 161-168. DOI:10.1007/s12565-017-0420-z |
[2] |
MANDREKAR-COLUCCI S, SAUERBECK A, POPOVICH P G, et al. PPAR agonists as therapeutics for CNS trauma and neurological diseases[J]. ASN Neuro, 2013, 5(5): e00129. |
[3] |
HE Xiaosong, LIU Yanqun, LIN Xiaohong, et al. Netrin-1 attenuates brain injury after middle cerebral artery occlusion via downregulation of astrocyte activation in mice[J]. Journal of Neuroinflammation, 2018, 15(1): 268. DOI:10.1186/s12974-018-1291-5 |
[4] |
张学杰, 任晓璠, 陈文芳. Rg1对胶质细胞iNOS基因表达的抑制作用及RU486对其影响[J]. 青岛大学医学院学报, 2017, 53(2): 133-135, 139. |
[5] |
RYU J K, CHO T, CHOI H B, et al. Pharmacological antagonism of interleukin-8 receptor CXCR2 inhibits inflammatory reactivity and is neuroprotective in an animal model of Alzheimer's disease[J]. Journal of Neuroinflammation, 2015, 12(1): 144. DOI:10.1186/s12974-015-0339-z |
[6] |
THEODORE S, CAO S W, MCLEAN P J, et al. Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease[J]. Journal of Neuropathology and Experimental Neurology, 2008, 67(12): 1149-1158. DOI:10.1097/NEN.0b013e31818e5e99 |
[7] |
杨珍, 王媛, 张艳军, 等. 基于细胞萃取及分子对接的淫羊藿中雌激素样作用成分分析[J]. 中国实验方剂学杂志, 2016, 22(20): 62-66. |
[8] |
WU Jinfeng, DU Juan, XU Changqing, et al. In vivo and in vitro anti-inflammatory effects of a novel derivative of icariin[J]. Immunopharmacology and Immunotoxicology, 2011, 33(1, 1): 49-54. |
[9] |
赖新强, 黄秀艳, 曾耀英. 脱水淫羊藿素对小鼠巨噬细胞免疫功能的影响[J]. 细胞与分子免疫学杂志, 2012, 28(4): 374-376, 380. |
[10] |
WANG Z, ZHANG X, WANG H, et al. Neuroprotective effects of icaritin against beta amyloid-induced neurotoxicity in primary cultured rat neuronal cells via estrogen-dependent pathway[J]. Neuroscience, 2007, 145(3): 911-922. DOI:10.1016/j.neuroscience.2006.12.059 |
[11] |
JIANG Mingchun, CHEN Xiaohan, ZHAO Xia, et al. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP+-induced toxicity in MES23.5 cells[J]. European Journal of Pharmacology, 2016, 786: 53-59. DOI:10.1016/j.ejphar.2016.05.031 |
[12] |
MONTESINOS J, ALFONSO-LOECHES S, GUERRI C. Impact of the innate immune response in the actions of ethanol on the central nervous system[J]. Alcoholism, Clinical and Experimental Research, 2016, 40(11): 2260-2270. DOI:10.1111/acer.13208 |
[13] |
LEONOUDAKIS D, RANE A, ANGELI S, et al. Anti-inflammatory and neuroprotective role of natural product securinine in activated glial cells:implications for Parkinson's disease[J]. Mediators of Inflammation, 2017, 2017(1): 1-11. |
[14] |
SERRANO-POZO A, MUZIKANSKY A, GOMEZ-ISLA T A, et al. Differential relationships of reactive astrocytes and microglia to fibrillar amyloid deposits in Alzheimer disease[J]. Journal of Neuropathology and Experimental Neurology, 2013, 72(6): 462-471. DOI:10.1097/NEN.0b013e3182933788 |
[15] |
LU Xiaofeng, MA Lili, RUAN Lingfei, et al. Resveratrol differentially modulates inflammatory responses of microglia and astrocytes[J]. Journal of Neuroinflammation, 2010, 7(1): 46. DOI:10.1186/1742-2094-7-46 |
[16] |
HUANG Wenjun, ZENG Shaohua, XIAO Gong, et al. Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum[J]. Frontiers in Plant Science, 2015, 6(1): 689-713. |
[17] |
WU Jinfeng, ZHOU Junmin, CHEN Xianghong, et al. Attenuation of LPS-induced inflammation by ICT, a derivate of icariin, via inhibition of the CD14/TLR4 signaling pathway in human monocytes[J]. International Immunopharmacology, 2012, 12(1): 74-79. DOI:10.1016/j.intimp.2011.10.015 |
[18] |
ZHANG Lang, FAN Ya, SU Hanwen, et al. Chlorogenic acid methyl ester exerts strong anti-inflammatory effects via inhibiting the COX-2/NLRP3/NF-κB pathway[J]. Food & Function, 2018, 9(12): 6156-6165. |
[19] |
ZHAO D, KWON S H, CHUN Y S, et al. Anti-neuroinflammatory effects of fucoxanthin via inhibition of Akt/NF-kappa B and MAPKs/AP-1 pathways and activation of PKA/CREB pathway in lipopolysaccharide-activated BV-2 microglial cells[J]. Neurochemical Research, 2017, 42(2): 667-677. DOI:10.1007/s11064-016-2123-6 |
[20] |
任晓璠, 孙宪昌, 王宇鑫, 等. Rg1和GR阻断剂对脂多糖诱导的BV2小胶质细胞iNOS及COX2蛋白表达影响[J]. 青岛大学医学院学报, 2016, 52(2): 148-149, 152. |
[21] |
WASIF N, MCCULLOUGH A E, GRAY R J, et al. Influence of uncommon histology on breast conservation therapy for breast cancer-biology dictates technique?[J]. Journal of Surgical Oncology, 2012, 105(6): 586-590. DOI:10.1002/jso.22132 |
[22] |
BONKHOFF H. Estrogen receptor signaling in prostate cancer: implications for carcinogenesis and tumor progression[J]. The Prostate, 2018, 78(1): 2-10. |
[23] |
XIAO Huihui, GAO Quangui, ZHANG Yan, et al. Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase(MEK/ERK)-mediated ER signaling pathway[J]. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144(B): 382-391. |
[24] |
叶海涌, 刘健, 楼宜嘉. 淫羊藿苷衍生物的制备及其雌激素样作用研究[J]. 浙江大学学报(医学版), 2005, 34(2): 40-45. |