帕金森病(PD)是全球第二大神经退行性疾病,其运动症状主要包括静止性震颤、运动迟缓、肌强直和姿势不稳[1]。PD病人黑质(SN)致密部的多巴胺(DA)能神经元进行性丢失,出现以α-突触核蛋白(α-syn)为主要成分的路易小体(LB)[2-3]。α-syn由140个氨基酸组成,参与DA合成、重摄取和突触DA囊泡的转运等功能[4]。α-syn构象的改变会引起DA能神经元的死亡[5-6],可能与运动功能障碍有关[7],但引起α-syn错误折叠的原因尚不明确[8]。近年来,与α-syn相关的PD动物模型成为大家关注的焦点。A53T转基因小鼠作为一种常用的高表达人源性α-syn的PD模型小鼠,可以在一定程度上模拟一些与PD相关的神经病理学和行为学特征[9-11],但是,A53T基因在小鼠体内并不仅在PD相关脑区表达[12]。近年来,通过注射腺相关病毒(AAV)使其在目的脑区表达已经得到了大家广泛的认可,AAV-α-syn动物模型也越来越多地被应用于PD研究中[13-16]。本研究通过将AAV2/9-α-syn注射到小鼠双侧SN中来研究过表达α-syn对小鼠运动行为的影响。现将结果报告如下。
1 材料与方法 1.1 实验材料SPF级8周龄雄性C57BL/6J小鼠40只,购于北京维通利华实验技术有限公司,饲养于清洁的小鼠房内,每笼4只,保证室温(21±2)℃、湿度(50±5)%、12/12 h昼夜循环光照,小鼠可自由饮水、取食。AAV由和元生物技术(上海)股份有限公司生产,实验组病毒为AAV2/9-α-syn,滴度为1.65×1016V.G./L,对照组病毒为AAV2/9-EGFP,滴度为9.95×1015V.G./L,经公司检测均可以正常表达。α-syn抗体为美国CST公司产品,β-actin抗体为中国博奥森公司产品。
1.2 动物分组及处理待小鼠适应环境1周后,将其随机平均分为2组。利用瑞沃德公司的呼吸麻醉机将其深度麻醉后,迅速取出固定在小鼠立体定位仪上,同时用异氟烷给予持续麻醉。将小鼠用耳杆适配器固定好,使其头部平整,耳杆左右读数相同,暴露出小鼠颅骨,参照第2版小鼠脑立体定位图谱,定位并读出前囟坐标,在三维推动器的引导下至SN区,其坐标为前囟后-3.1 mm、旁开±1.4 mm、深度-4.4 mm[17]。两组小鼠均采用微量注射泵在两侧SN注射200 nL病毒,流量为0.5 nL/s,注射结束后留针10 min再缓慢退针,病毒注射4周后对小鼠进行行为学检测。
1.3 检测指标及方法 1.3.1 Western Blot方法检测SN区α-syn蛋白表达行为学实验结束后,每组取10只小鼠,用异氟烷深度麻醉后在冰上迅速断头取脑,取出SN后加入蛋白裂解液研磨均匀于冰上裂解30 min,在4 ℃下以12 000 r/min离心20 min,取上清,用BCA法测定蛋白浓度。蛋白经SDS-PAGE电泳后湿转至PVDF膜上。用50 g/L脱脂奶粉将切出的目的条带在摇床上室温封闭2 h后,分别用α-syn(1:1 000)和β-actin(1:10 000)的一抗于4 ℃在摇床上孵育过夜。用TBST洗3次,每次10 min,再用山羊抗兔(1:10 000)二抗室温孵育1 h,TBST洗膜后用ECL发光液孵育1 min,用LSUVP Vision WorksTM LS软件显影后进行统计分析。
1.3.2 转棒实验使用美国Med Associates,Inc.公司的转棒仪检测小鼠运动协调能力。先将小鼠面对墙壁放在静止的转棒仪上适应2 min,适应结束后,将转棒仪转速设置为4~40 r/min,匀加速转动5 min。实验开始后,小鼠会随着转棒仪转动连续奔跑或掉落下来,5 min后转棒仪自动停止转动,系统可记录小鼠在转棒仪上停留的时间。采用非连续性测量法,测定2次,时间间隔2 h,最后取2次测量的平均值。
1.3.3 爬杆实验取一根长0.5 m、直径1 cm的木杆,在木杆顶部固定一个直径为2.5 cm的塑料球,并在木杆外表面缠满纱布防止小鼠打滑。于实验前1 d训练小鼠使其能够在杆上爬行。实验时,将小鼠头部向上贴近塑料球,使其身体自然下垂,开始计时。分别记录小鼠头部向下、后肢到达塑料球处和小鼠四肢全部到达地面的时间,作为小鼠的爬杆调头时间和总时间。每隔20 min检测1次,取5次检测的平均值,如果小鼠中间向上调头爬行或停止爬行,则重新进行检测。
1.4 统计学分析应用SPSS 18.0软件进行统计学分析,计量资料结果以x±s形式表示,两独立样本均数比较采用Student’s t检验,以P<0.05为差异有显著性。
2 结果 2.1 小鼠SN区α-syn蛋白表达比较实验组与对照组小鼠SN区α-syn表达水平分别为1.218±0.114和0.697±0.140,实验组小鼠SN区的α-syn表达明显增加,差异有统计学意义(t=2.803,P<0.05)。
2.2 α-syn对小鼠运动功能的影响转棒实验结果显示,对照组小鼠和实验组小鼠在转棒仪上停留的时间分别为(178.40±19.04)和(128.80±13.23)s,实验组小鼠在转棒仪上停留的时间较对照组小鼠明显缩短(t=2.177,P<0.05)。爬杆实验结果显示,对照组和实验组小鼠爬杆所用总时间分别为(8.76±0.41)和(15.26±0.64)s,调头时间分别为(1.59±0.10)和(3.32±0.14)s,实验组小鼠爬杆所用总时间和调头时间均较对照组明显增加(t=8.045、9.401,P<0.01)。
3 讨论PD是一种多发于中老年人的中枢神经系统退行性疾病,遗传因素、环境因素、氧化应激以及炎症因素等均可参与PD的发病[18]。路易小体的出现是PD的病理特征之一,而聚集的α-syn是路易小体的主要成分。本实验对C57BL/6J小鼠双侧SN定向注射AAV2/9-α-syn后,通过转棒实验和爬杆实验研究小鼠SN内过表达α-syn对运动功能的影响。爬杆实验结果显示,与对照组相比,实验组小鼠爬杆所用总时间与调头时间均明显增加;转棒实验结果显示,与对照组相比,实验组小鼠在转棒仪上停留的时间明显缩短。上述实验结果均表明SN区过表达α-syn会使小鼠运动协调能力下降,出现明显的运动功能障碍。
运动不能、肌僵直、静止性震颤和姿势反射障碍是PD病人常见的运动症状,而α-syn异常聚集产生的毒性会造成运动功能障碍与神经变性[17]。有文献报道,过表达α-syn小鼠表现出运动功能障碍、纹状体DA丧失和神经变性[19-21]。此外有研究观察到,(Thy1)-h[A30P]-αSyn转基因小鼠出现早期中枢神经系统运动障碍[22]。本研究结果显示,在小鼠SN内注射AAV2/9-α-syn 4周后,小鼠SN区α-syn蛋白的表达量明显上升,同时小鼠出现了明显的运动功能障碍。在AAV-α-syn过表达模型中,运动损伤的出现时间和损伤程度在不同的研究中有所差异[21, 23]。通常,SN区单侧注射AAV-α-syn被更广泛地应用于PD研究中,但是,与单侧注射相比,SN区双侧注射AAV-α-syn会导致更明显的病理学特征与运动功能障碍[24-29]。有研究结果显示,在大鼠SN区注射AAV6-α-syn后,囊泡单胺转运蛋白2、多巴胺转运体和酪氨酸羟化酶表达均降低30%~50%[30],这提示α-syn的过表达会导致DA合成和释放的普遍下调,进而影响运动功能。α-syn的突变与过表达也可引起线粒体功能障碍和氧化应激等[31-32],但SN区注射AAV-α-syn后是否存在线粒体功能障碍与氧化应激的改变还有待进一步研究。
综上所述,小鼠SN区双侧注射AAV2/9-α-syn 4周会引起其SN区α-syn表达增加,小鼠出现运动功能障碍。
[1] |
KANSARA S, TRIVEDI A, CHEN S, et al. Early diagnosis and therapy of Parkinson's disease: can disease progression be curbed?[J]. Journal of Neural Transmission (Vienna, Austria:1996), 2013, 120(1): 197-210. DOI:10.1007/s00702-012-0840-9 |
[2] |
BABA M, NAKAJO S, TU P H, et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies[J]. American Journal of Pathology, 1998, 152(4): 879-884. |
[3] |
DEHAY B, BOURDENX M, GORRY P A, et al. Targeting alpha-synuclein for treatment of Parkinson's disease:mechanistic and therapeutic considerations[J]. Lancet Neurology, 2015, 14(8): 855-866. DOI:10.1016/S1474-4422(15)00006-X |
[4] |
YU S, UEDA K, CHAN P. alpha-Synuclein and dopamine metabolism[J]. Molecular Neurobiology, 2005, 31(1/3): 243-254. |
[5] |
BUTLER B, SAMBO D, KHOSHBOUEI H. Alpha-synuclein modulates dopamine neurotransmission[J]. Journal of Chemical Neuroanatomy, 2017, 83(2): 41-49. |
[6] |
TOLMASOV M, DJALDETTI R, LEV N, et al. Pathological and clinical aspects of alpha/beta synuclein in Parkinson's disease and related disorders[J]. Expert Review of Neurotherapeutics, 2016, 16(5): 505-513. DOI:10.1586/14737175.2016.1164600 |
[7] |
FORTUNA J T, GRALLE M, BECKMAN D A, et al. Brain infusion of alpha-synuclein oligomers induces motor and non-motor Parkinson's disease-like symptoms in mice[J]. Behavioural Brain Research, 2017, 333(4): 150-160. |
[8] |
BENDOR J T, LOGAN T P, EDWARDS R H. The function of alpha-synuclein[J]. Neuron, 2013, 79(6): 1044-1066. DOI:10.1016/j.neuron.2013.09.004 |
[9] |
PAUMIER K L, SUKOFF RIZZO S J, BERGER Z, et al. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson's disease[J]. PLoS One, 2013, 8(8): e70274. DOI:10.1371/journal.pone.0070274 |
[10] |
DAWSON T M, KO H S, DAWSON V L. Genetic animal models of Parkinson's disease[J]. Neuron, 2010, 66(5): 646-661. DOI:10.1016/j.neuron.2010.04.034 |
[11] |
CHESSELET M F. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson's disease?[J]. Experimental Neurology, 2008, 209(1): 22-27. DOI:10.1016/j.expneurol.2007.08.006 |
[12] |
CHESSELET M F, FLEMING S, MORTAZAVI F, et al. Strengths and limitations of genetic mouse models of Parkinson's disease[J]. Parkinsonism & Related Disorders, 2008, 14(Suppl 2): S84-S87. |
[13] |
KOPRICH J B, JOHNSTON T H, REYES M G, et al. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the path[J]. Molecular Neurodegeneration, 2010, 5(1): 43. DOI:10.1186/1750-1326-5-43 |
[14] |
MARKS J, BARTUS R T, SIFFERT J A, et al. Gene delivery of AAV2-neurturin for Parkinson's disease: a double-blind, randomised, controlled trial[J]. Lancet Neurology, 2010, 9(12): 1164-1172. DOI:10.1016/S1474-4422(10)70254-4 |
[15] |
ULUSOY A, DECRESSAC M, KIRIK D, et al. Viral vector-mediated overexpression of alpha-synuclein as a progressive model of Parkinson's disease[J]. Progress in Brain Research, 2010, 184(3): 89-111. |
[16] |
WILLIAMS G P, SCHONHOFF A M, JURKUVENAITE A A, et al. Targeting of the class Ⅱ transactivator attenuates inflammation and neurodegeneration in an alpha-synuclein model of Parkinson's disease[J]. Journal of Neuroinflammation, 2018, 15(1): 244. DOI:10.1186/s12974-018-1286-2 |
[17] |
IP C W, KLAUS L C, KARIKARI A A, et al. AAV1/2-induced overexpression of A53T-alpha-synuclein in the substantia nigra Results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: a new mouse model for Parkinson's disease[J]. Acta Neuropathologica Communications, 2017, 5(1): 11. DOI:10.1186/s40478-017-0416-x |
[18] |
FLEMING S M. Mechanisms of gene-environment interactions in Parkinson's disease[J]. Current Environmental Health Reports, 2017, 4(2): 1-8. |
[19] |
LO BIANCO C, RIDET J L, SCHNEIDER B L, et al. alpha-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10813-10818. DOI:10.1073/pnas.152339799 |
[20] |
VAN ROMPUY A S, OLIVERAS S M, VAN D A, et al. Nigral overexpression of alpha-synuclein in the absence of parkin enhances alpha-synuclein phosphorylation but does not modulate dopaminergic neurodegeneration[J]. Molecular Neurodegeneration, 2015, 10(1): 23. DOI:10.1186/s13024-015-0017-8 |
[21] |
KIRIK D, ROSENBLAD C, BURGER C, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system[J]. Journal of Neuroscience, 2002, 22(7): 2780-2791. DOI:10.1523/JNEUROSCI.22-07-02780.2002 |
[22] |
NEUMANN M, KAHLE P J, GIASSON B I, et al. Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies[J]. Journal of Clinical Investigation, 2002, 110(10): 1429-1439. DOI:10.1172/JCI200215777 |
[23] |
MULCAHY P, O'DOHERTY A, PAUCARD A, et al. Development and characterisation of a novel rat model of Parkinson's disease induced by sequential intranigral administration of AAV-alpha-synuclein and the pesticide, rotenone[J]. Neuroscience, 2012, 203(11): 170-179. |
[24] |
DONG Z Z, FERGER B, FELDON J, et al. Overexpression of Parkinson's disease-associated alpha-synucleinA53T by recombinant adeno-associated virus in mice does not increase the vulnerability of dopaminergic neurons to MPTP[J]. Journal of Neurobiology, 2002, 53(1): 1-10. |
[25] |
GOMBASH S E, MANFREDSSON F P, KEMP C J, et al. Morphological and behavioral impact of AAV2/5-mediated overexpression of human wildtype alpha-synuclein in the rat nigrostriatal system[J]. PLoS One, 2013, 8(11): e81426. DOI:10.1371/journal.pone.0081426 |
[26] |
VAN DER PERREN A, TOELEN J, CASTEELS C, et al. Longitudinal follow-up and characterization of a robust rat model for Parkinson's disease based on overexpression of alpha-synuclein with adeno-associated viral vectors[J]. Neurobiology of Aging, 2015, 36(3): 1543-1558. DOI:10.1016/j.neurobiolaging.2014.11.015 |
[27] |
FEBBRARO F, ANDERSEN K J, SANCHEZ-GUAJARDO V, et al. Chronic intranasal deferoxamine ameliorates motor defects and pathology in the alpha-synuclein rAAV Parkinson's model[J]. Experimental Neurology, 2013, 247(2): 45-58. |
[28] |
OLIVERAS-SALVA M, VAN DER PERREN A, CASADEI N, et al. rAAV2/7 vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration[J]. Molecular Neurodegeneration, 2013, 8(1): 44. DOI:10.1186/1750-1326-8-44 |
[29] |
BOURDENX M, DOVERO S, ENGELN M, et al. Lack of additive role of ageing in nigrostriatal neurodegeneration triggered by alpha-synuclein overexpression[J]. Acta Neuropathologica Communications, 2015, 3(1): 46. DOI:10.1186/s40478-015-0222-2 |
[30] |
DECRESSAC M, MATTSSON B, LUNDBLAD M, et al. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons[J]. Neurobiology of Disease, 2012, 45(3): 939-953. DOI:10.1016/j.nbd.2011.12.013 |
[31] |
POON H F, FRASIER M, SHREVE N, et al. Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice-a model of familial Parkinson's disease[J]. Neurobiology of Disease, 2005, 18(3): 492-498. DOI:10.1016/j.nbd.2004.12.009 |
[32] |
DEVI L, RAGHAVENDRAN V, PRABHU B M, et al. Mitochondrial import and accumulation of alpha-synuclein impair complex Ⅰ in human dopaminergic neuronal cultures and Parkinson disease brain[J]. The Journal of Biological Chemistry, 2008, 283(14): 9089-9100. DOI:10.1074/jbc.M710012200 |